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ABSTRACT 
 In the present work, the structural modifications of Ge-doped silica preforms due to γ-irradiation at room 
temperature have been investigated using Raman spectroscopy. The MCVD fabricated preforms labelled as P1 and P2 are 
distinguishable by the oxidation and thermal history during the fabrication process, in which related to the oxygen bonding 
of SiO4 tetrahedral. From Raman analysis, the 480 cm-1(D1) and 609 cm-1(D2) peaks are the main network features of pure 
and doped silica glass, suggest the formation of defect centers in the preforms. The structural modifications of this defects 
centers are more sensitive in P2, due to the oxygen deficient state of the preform. 
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INTRODUCTION 
 Recent study shows that under certain 
circumstances of fabrication parameter (i.e. pressure, 
precursor flow, temperature and collapse speed), specific 
defect condition can occur (Lü et al. 2014; Salh, 2011; 
Shen et al. 2013). The condition for defect to form is 
mainly determined by the oxidation (annealing) 
environment during the process which later can be 
classified into oxygen rich or oxygen deficient center 
(ODC) (Ballato and Dragic, 2013; Pasquarello and Car, 
1998). The ODC is responsible for many photo-induced 
transformations that is significant to the development of 
electronic and optical devices (Salh, 2011; Skuja, 1998).  
The understanding in the effect of ODC in glass is limited, 
due to the nature of this defect as it is diamagnetic and 
hindered by electron-phonon interaction (Skuja, 1998). 
When the ODC is bleached by photon, this center 
transforms from diamagnetic into paramagnetic. This 
rearrangement of electron together with the atomic 
relaxation, results in the increasing of polarizability. For 
further investigation, we exposed our sample to        
gamma- irradiation in order to induce microstructure 
damage allowing the Si-O-Si coordination to be identified 
and studied. The structural modification of Ge-doped 
silica preform have been investigate using Raman 
spectroscopy.  
 Structural modification such as symmetric 
stretching and breathing motion in ring have been reported 
to be Raman scattering active (Pasquarello and Car, 1998; 
Salh, 2011; Shen et al. 2013). The number of Si-O-Si rings 
and their correspondants to the distribution under γ 
irradiation will be quantitatively investigate to understand 
the effect of preform quality on two different fabrication 
process.  
 

EXPERIMENTATION 
 
Preformed fabrication via MCVD 
 The preforms have been fabricated using 
modified chemical vapor deposition (MCVD) technique 
labelled as P1 and P2. The MCVD process utilized vapor 
mixture of highly purity Silica Tetrachloride (SiCl4) and 
Germanium Tetrachloride (GeCl4) as starting material 
(Nagel et al. 1982; Wood et al. 1987)]. The mixture are 
oxidised by O2 gas being heated with external high 
temperature oxy-hydrogen flame to form a fine glass 
particle ‘soot’. The vapor mixture flowed into a silica 
glass tube which also serve as a substrate. The ‘soot’ are 
then deposited on the inside walls of the glass tube at 
downstream of the flame moving direction due to the 
thermophoresis phenomena (Simpkins et al. 1979). The 
soot is immediately sintered to transparent, bubble-free 
high quality glass layer as the flame traverses over that 
soot position. By repeating the traversal process again, the 
build-up of the glass layer is done. When the required 
glass thickness is attained, the tube substrate is heated 
closed to silica glass fictive temperature (1900 – 2100 °C) 
which reduced the tube diameter slowly (collapse process) 
and finally produced a solid glass rod known as preform. 
During collapse process, O2 flowed into the substrate tube 
to preserve its inner pressure and to avoid volatilization of 
GeO2 from the core. The O2 flow rate are gradually 
reduced as the tube diameter decreased and finally stop 
when the tube inner diameter started to fuse. 

This MCVD technique are widely exploit in 
optical fiber fabrication due to the highly pure starting 
precursor with low impurities (i.e. transition metal ions 
and OH-ions) glass for long distance optical 
communication network (Bubnov et al. 2004; 
MacChesney, 2000). The final quality of the optical glass 
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such as optical loss/attenuation, refractive index and shape 
can be controlled by varying the precursor flow and 
process temperature (i.e. oxidation and annealing) (Ainslie 
et al. 1982). 
 In the present work, two types of sample are 
employed with the precursor flow rate and deposition 
temperatures are shown in Table-1. The collapsing rate is 
defined as the speed of the hydrogen-oxygen torch moving 
from end to end of the preform and the collapse 
temperature is fixed similar to oxidation temperature. Due 
to high temperature, substrate tube experienced stronger 
distortion and also greater GeO2 volatilization rate 
(Bubnov et al. 2004; MacChesney, 2000; Nagel et al. 
1982; Simpkins et al. 1979; Wood et al. 1987). The final 
solid glass rod is cut to small glass disk (thickness about 
2.0 ± 0.2 mm) and polished for optical quality using 
diamond sand paper. The GeO2 concentration, distribution 
and also refractive index (RI) were determined using x-ray 
energy dispersion technique (FEG Quanta 450, EDX 
Oxford) and preform profiler (Photon Kinetic PK 104).  
 
Table-1. Precursor flow rate and deposition temperature. 

 

Precursor/Process 
Sample 

P1 
Sample 

P2 
SiCl4 vapor flow 100 100 
GeCl4 vapor flow 200 150 

O2 flow 1400 1600 
Oxidation temperature (C) 2100 2200 
Collapsing rate [mm/min] 

(torch speed)  
2 4 

 
a) Raman spectroscopy 

Raman scattering measurements were carried out 
for all preforms by using Renishaw inVia Raman 
spectrometer in room temperature. The excitation laser 
was focused to the sample with 50x objective lens from 
532 nm (DPSS) laser with power of 25mW. The scattering 
intensity light collected at 90° to the excitation beam are 
dispersed with 1800lines/mm dispersive grating through a 
65 um     pin-hole then detected using peltier-cooled CCD. 
The spectral resolution of the dispersive spectrometer is 
1.1 cm-1. All the Raman intensity have been corrected for 
temperature dependence, as shown in equation (1), using 
Bose-Einstein equation (2) [27], 

 

Icorrected 
Iobserved

n()1
                      (1) 

 

 

n()  exp
h
BT









                           (2) 

Icorrected = measured intensity in Raman spectra 
h          = Plank’s constant 
ω         = wavenumber in Raman spectra 
T         = measurement temperature in Kelvin 
κB        = Boltzman’s constant 
 

The Raman spectra are then normalized to the Si-
O-Si symmetric stretching of bridging oxygen (BO) 
dominant band around 440 cm-1 where this band are 
predominant for 6-membered SiO4 (Vaccaro et al. 2010). 

 
RESULTS AND DISCUSSION 
 
Fiber analysis 

The refractive index profile (RIP) are then 
measured by using a preform profiler (Photon Kinetic 
PK104) to see the Ge mol% concentration in the preforms. 
Note from Table-1, the germanium has been proved to 
have the ability to increase the RIP of the silica. The 
cladding part of the preform consist only silica, while the 
core consist both of silica and germanium. The index 
difference between the core and the outer layer are about 
1.44% (P1), and 0.72% (P2).The high index difference in 
the core shows that the germanium is highly doped in the 
core during the fabrication process. 
 
Table-2. Refractive index profile (RIP) for sample P1 and 

P2. 
 

 
 

Analysis on the fiber have been carried out using 
x-ray energy dispersion analysis (EDX) to see the 
distribution of all elements in the preforms.  

 

 
 

Figure-2. The distribution of silica, oxygen and 
germanium in P1 and P2. 

 
By using mapping technique, Figure-1 shows the 

homogenous distribution of Silica, Oxygen and 
Germanium element in the core and cladding part for both 
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preform. This result agree with the RIP profile (Table-2), 
showing Ge is higly distributed in the core. 

 
a) Raman Spectroscopy 

 
Figure-2. Raman spectra for both preforms a) before 

radiation b) after γ- irradiation with 10Gy. Note that the 
upper line (red) refers to P2 while the down line (blue) is 
P1. Main peak reveals at 440, 609, 800, 1060, 1230 and 

1280 cm-1. 
 

The Raman spectra of both sample before and after 
radiated with γ irradiation of 10 Gy is given in Figure-2 (a) 
and (b). Before radiation, both sample produces similar 
Raman peak wavenumber at ~440, ~480, 600 and 800 cm-

1. It has been reported that the broad region around 400-
500 cm-1 consist two main peaks situated at 440 cm-1 and        
480 cm-1 (D1) [(Galeener, 1979; Vaccaro et al. 2010)]. 
Peak at 440 cm-1 peak represents the symmetric stretching 
of bridging oxygen atoms with silicon (Si-O-Si)n with ring 
number of n=6 (Baur, 1980; Pasquarello and Car, 1998) . 
The 480 cm-1 (D1) is a defect mode, assigned to breathing 
motion of bridging oxygen in 4-membered SiO4 rings 
(Baur, 1980). 

 From peak deconvolutions at this region, the 
Raman peaks were observed at 451 and 485 cm-1 with the 
half width between 93 to 106 cm-1. The Raman shift have 

been shifted to higher wavenumber around ~12 cm from 
peak at 440 cm-1 and it is dominated by the changes of 
bond length (compared with bond angle) which can be 
refer to the existence of tensile strain between Si-O bond 
and also phonon confinement effects (Galeener, 1979; 
Revesz and Walrafen, 1983; Sato and Suda, 1998). Peak at 
this region also represent strong, narrow and polarized 
GeO2 raman scattering at 440 and 456 cm-1 which is 
capable to shift the peak center wavenumber (Gillet et al. 
1990; Sato and Suda, 1998).  The dispersion of the peak 
half width about ~13 cm-1 from usual (Si-O-Si) symmetric 
stretching mode of bridging oxygen is also related to the 
incorporation of Ge atoms into Si-O-Si network (Gillet et 
al. 1990; Martinez et al. 2003).  

 As reported in (Revesz and Walrafen, 1983), 
peak at 480 cm-1 (D1) is immune to particle irradiation 
thus no/small significant observation was found. The peak 
at 609 cm-1 (D2) is clearly observed on both sample arise 
from symmetric stretching vibration of oxygen in a planar 
three membered (Si-O) 3 ring structures (Baur, 1980; 
Pasquarello and Car, 1998; Shen et al. 2013). The 
intensity of this band was found higher for sample P2 
compared to P1 suggesting an enhancement of the (Si-O-
Si)3 ring structure. The enhancement is suspected from 
high mobility of Ge atoms during high temperature 
oxidation process that broke long-range SiO4 tetrahedral 
structure. Later, when the sample cooled down to room 
temperature, the Ge atoms bond and forming a short bond 
with O atoms thus left down the       (Si-O)3 ring structure. 
From structural relaxation study shows this phenomenon 
might increase the material fictive density and the 
symmetric cooperative vibration (Jr. and Galeener, 1980). 

 As the effect of γ-radiation, the glass atomic 
structure is deformed and producing a point defect 
(Friebele et al. 1979). From quantitative studies of the 
Raman peak, the defect can be identified and their 
respective phonon interaction, bonding characteristics and 
strain can be analyzed. Note from Figure-1. (b), after 
irradiation, more Raman modes appear at 700, 800 1060, 
and 1230 cm-1 region. The increasing number of these 
modes can be related to the deformation of Si-O-Si, Ge-Si, 
Ge-O and Si-Si bond (Gillet et al. 1990; Martinez et al. 
2003; Sato and Suda, 1998). At region 600 cm-1, the peak 
is splitting and broaden slightly to higher wavenumber 
with decreasing intensity due to Ge-O-Ge bending modes. 
The weak band at 1060 and 1230 cm-1 which are only 
apparent in the irradiate sample is assigned to Si-O-Si              
transverse-optical (TO) and longitudinal-optical (LO)            
symmetric-stretching and asymmetric stretching 
respectively with one, two, three and four non-bridging 
oxygen (Galeener, 1979, 1982; McMillan et al. 1994). 
While peak at 1230cm-1 shows the breakage of SiO2 to 
metasilicate, Si2O6 (Chmel and Sochivkin, 1986; 
McMillan, 1980). 
 Figure-3 is the absorption spectra reported by 
Shafiqah et al on the same sample used in this study. The 
result shows only in P2 sample, peak at 5.1 eV which 
assigned to the germanium oxygen- deficient sample 
(GODC) can be clearly observed. This result indicate that 
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the P2 is an oxygen deficient state while P1 is in an 
oxygen rich sample. Our results from Raman spectroscopy 
reveals the oxygen deficient samples are more sensitive to 
the structural modification by γ-irradiation, showing larger 
Raman intensity compared to the oxygen rich. 
 

 
 

Figure-3.  Absorption spectra for P1 and P2, with peak at 
5.1 eV is assigned to the GODC only apparent in P2 

(Shafiqah et al. 2015). 
 

CONCLUSIONS 
 In summary, we have examined the Raman 

scattering of Ge-doped SiO2 optical preform fabricated by 
MCVD technique. Two types of sample were fabricated to 
study the influence of oxidation process parameter by 
adjusting the precursor concentration and process 
temperature. Although their final concentration is almost 
similar, oxygen-deficient sample is more sensitive to 
structural modification by γ-irradiation thus produces 
significant Raman scattering. 
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