VOL. 10, NO. 16, SEPTEMBER 2015

ARPN Journal of Engineering and Applied Sciences ﬁ H‘:B

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

ISSN 1819-6608

www.arpnjournals.com

EFFECTS OF PASTERNAK LAYER ON FORCED TRANSVERSE
VIBRATION OF A TIMOSHENKO DOUBLE-BEAM SYSTEM
WITH COMPRESSIVE AXIAL LOAD

M. Nasirshoaibi and N. Mohammadi
Department of Mechanical Engineering, Islamic Azad University, Parand Branch, Tehran, Iran
E-Mail: mehrdadnasirshoaibi@gmail.com

ABSTRACT

Based on Timoshenko beam theory, the forced transverse vibrations of an elastically connected simply supported
Timoshenko double-beam system with Pasternak layer in-between subjected to arbitrarily distributed continuous loads
under compressive axial load are investigated. It is assumed that the two beams of the system are continuously joined by a
Pasternak layer. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The
effects of Pasternak layer on the forced vibrations of the Timoshenko double-beam system are discussed for one case of
particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly
dependent on the compressive axial load and shear modulus of Pasternak layer. Vibrations caused by the harmonic exciting
forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The important result
that this paper put emphasize on it is that the magnitudes of the steady-state vibration amplitudes become smaller when the
shear Pasternak modulus increases and Pasternak layer can reduces the magnitudes of the steady-state vibration amplitudes
more than Winkler elastic layer. But base on Timoshenko theory which takes into account the effects of shear deformation
and rotary inertia, Pasternak layer doesn’t have considerable effect on the magnitudes of the steady-state vibration
amplitudes. Thus the Timoshenko beam-type dynamic absorber with Pasternak layer acts with a little more efficiency than
Winkler elastic layer. Effects of Pasternak layer on Rayleigh double-beam is more than Timoshenko double-beam. Thus
the Timoshenko beam-type dynamic absorber with Pasternak layer can be used to suppress the excessive vibrations of
corresponding beam systems instead of those with Winkler elastic layer. Numerical results of the present method are

verified by comparing with those available in the literature.

Keywords: forced vibration, Timoshenko double-beam, compressive axial load, Pasternak layer.

1. INTRODUCTION

A great number of mechanical systems are
complex structures composed of two or more basic
mechanical systems whose dynamic behavior s
conditioned by their interaction. The systems connected by
an elastic layer constitute one group of such mechanical
structures which are commonly encountered in
mechanical, construction and aeronautical industry.
Mechanical systems formed by elastic connection of their
members, due to the nature of the dynamic interaction
conditioned by elastic connections are characterized by
complex vibration and a higher number of natural
frequencies. Since the number of natural frequencies
depends on the number of basic elements joint together,
such mechanical systems are exposed to an increased
likelihood of creating resonance conditions which can
cause breakage and damage. Such models are important as
they give the initial approximation of the solution and a
general insight into a dynamic behavior of the system at
slight motion. The problem concerning the vibrations of
beams joint by a Winkler elastic layer has attracted the
interest of a large group of scientists. The problem of two
elastically connected beams joint by the Winkler elastic
layer emerged in order to determine the conditions for the
behavior of the system acting as a dynamic absorber in
technical practice.

A mathematical model was developed by Seelig
and Hoppman [1]. They investigated the problem of an
impulse load effect on a beam and produced a system of
partial differential equations describing its vibration. The
obtained theoretical and experimental results confirmed a
sound approximation of an analytical solution obtained for
slender beams at small transverse motions using the Euler-
Bernoulli theory.

Oniszczuk [2, 3] analyzed the problem of free
and forced vibration of two elastically connected Euler-
Bernoulli beams. He determined analytical solutions for
eigen-frequencies, amplitudinous functions and vibration
modes. He discussed the effect of stiffness which the
elastic interlayer had on the frequencies and amplitudes of
the system. He determined the conditions for the
occurrence of resonance and the behavior of the system as
a dynamic absorber. The analysis of the system composed
of two connected beams was carried on by Zhang et al. [4,
5]. In their work, free and forced vibrations by two
elastically connected Euler-Bernoulli beams affected by
axial compression forces are investigated. They presented
analytical solutions for natural frequencies of the system
in the function of axial compression force impact and their
effect on the vibration amplitude. They determined the co-
dependency between the system’s critical force and the
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Euler critical load in the function of an axial force of the
other beam.

It has been shown that the behavior of foundation
materials in engineering practice cannot be represented by
foundation model which consists of independent linear
elastic springs. In order to find a physically close and
mathematically simple foundation model, Pasternak
proposed a so-called two-parameter foundation model
with shear interaction. Wang et al. [6, 7], studied natural
vibrations of a Timoshenko beam on a Pasternak-type
foundation. Frequency equations are derived for beams
with different end restraints. A specific example is given
to show the effects of rotary inertia, shear deformation,
and foundation constants on the natural frequencies of the
beam.

Stojanovic et al. [8] analyzed free vibration and
static stability of two elastically connected beams with
Winkler elastic layer in-between with the influence of
rotary inertia and transverse shear. The motion of the
system is described by a homogeneous set of two partial
differential equations, which is solved by using the
classical Bernoulli-Fourier method. The boundary value
and initial value problems are solved. The natural
frequencies and associated amplitude ratios of an
elastically connected double-beam complex system and
the analytical solution of the critical buckling load are
determined. The presented theoretical analysis is
illustrated by a numerical example, in which the effect of
physical parameters characterizing the vibrating system on
the natural frequency, the associated amplitude ratios and
the critical buckling load are discussed. Stojanovic et
Kozic [9] discussed the case of forced vibration of two
elastically connected beams with Winkler elastic layer in-
between and the effect of axial compression force on
amplitude ratio of system vibration for three types of
external forcing (arbitrarily continuous harmonic
excitation, uniformly continuous harmonic excitation and
concentrated harmonic excitation). They determined
general conditions of resonance and dynamic vibration
absorption. In paper [10], Stojanovic et al. discussed the
analytic analysis of static stability of a system consisting
of three elastically connected Timoshenko beams on an
elastic foundation. They provided expressions for critical
force of the system under the influence of elastic Winkler
layers. Stojanovic et al. [11] using the example of multiple
elastically connected Timoshenko and Reddy-Bickford
beams, determined the analytical forms of natural
frequencies, their change under the effect of axial
compression forces and the conditions for static stability
for a different number of connected beams.

As an extension of the work of Stojanovic et al.
[9], Effects of Pasternak layer on forced transverse
vibration of a Timoshenko double-beam system with
effect of compressive axial load are studied in the present

paper.

2. MATHEMATICAL MODEL

The following assumptions is considered: (a) the
behavior of the beam material is linear elastic; (b) the
cross-section is rigid and constant throughout the length of
the beam and has one plane of symmetry; (c) shear
deformations of the cross-section of the beam are taken
into account while elastic axial deformations are ignored;
(d) the equations are derived bearing in mind the
geometric axial deformations; (e) the axial forces F
acting on the ends of the beam are not changed with time;
(f) the two beams have the same effective material
constants.

Figure-1 shows Timoshenko double-beam system
with Pasternak layer in-between with length of [, that

subjected to axial compressions F; and F, that are
positive in compression and arbitrarily distributed
transverse continuous loads f, and f, that are positive
when they act downward.
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Figure-1. Timoshenko double-beam complex system with
Pasternak layer in-between.

An element of deflected differential layered-beam
of length dx with Pasternak layer between two cross-
sections taken normal to the deflected axis to the beam is
shown in Figure-2.

Beam
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Figure-2. Deflected differential layered-beam element
with Pasternak layer in-between.
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The set of coupled differential equations of 61//1 a % (=)= fi(ot), (1
forced transverse vibration of a double-beam system with < An. (1)
effect of compressive axial load with Winkler elastic layer oy ow, >
. . 1
in-between have the following form [9]. EL—7 +GA1’€( ™ %] plhi—5=0

and

2 2 2
GAzk(al//z _6 W2]+pA2M+FZm+K(W2_Wl)sz(x’t)’

ox ox? or? ox?
0? 0 0? @
y W y
EIZ axzz-i-GAzk(a—xz—l//zj—plz atZZZO'

If we consider Pasternak layer instead of Winkler elastic layer, the above equations can be changed in the following form:

2 2 2 2 ?
GAlk[aa'/;l_a(ale+pAl—a B K ) - G(a L WZJ ),

2 or? ox* ox* )
O’y ow o’y
Ell 2 GAlk a—_ 1| [1 atz =O
and
oy, 0°w, o*w, o%w, o’w, 0*w
GAZk ax —? +pA2 ?4‘}7‘2 axz +K(W2—Wl)_GO axz — axz =f2(x,l‘),
4

o’y ow o’y
EL, Ve Gk (a—;—l//z)—plz ]

By eliminating , from equation (3) and i, from equation (4), the following two fourth-order partial differential
equations can be obtain

5 (1 E_, G ja“wl ELG, 0'w; , A( KI, ]82w1_Kp11 0w,
1 1

+
GAk  GAk ) ox*  GAk ox* GA’k ) o GAk of
2 2 4
i1 LK G 8w1+ ELK o a»zz_pll LE__A G azwlz -
FGAk F,)ox> | GAk ox Gk GAk GAjk )ox? ot

pI G, o'w, N p’1,G 0'w,
GAk ox* ot Gk ot

Pl szl(x,t)_ El 62f1(x,z)
GAk ot GAk  ox°

+K(w, —w,) = fi(x,1)+

and
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g1 o, G o'w, ELG, 64w1+ 1. KL o*w, Kpl, 0*w,
2\7 Gk GAk ) oxt Gak oxt 2\7 G4k ) o GAk o

2 2 4
cp[1 ELK Gy avz2+ ELK o av?_plz WE B G azwzz ©
F,GAk F,) ox? | GAk ox Gk GAk  GAk )ox? ot

4 2 4 2 2
/71 G, 0w e 1,G o ":’2 —K(w—w,) = f,(x.0)+ pl, 0 fz(zx’t)_ El, 0 fz(jcvf)
GA k ox* ot Gk ot GA,k ot GA,k oOx

Equations (5) and (6) can be reduced to fourth-order partial differential equations for forced vibration of the Timoshenko
double-beam model

4 4 2 2
Cfll 2 2(F G)8w1 C§1G26W2+1+ 2aw1 Hzlémzzz
ciC? tc2c?ooxt ci) ot C% oo
C2 H. |0*w C. H o°w
+|m(F-G,)-—2— Ly| 2L +mG, |—F
{ (£ -Gy c? cfj Ox (cfl ci 0] ox? -
7
_| 2 Cbzl Mg —G,) a4w1 mlGO a4w2 +ia4wl
ey cfl P cy o’a* Ch oot
1 fixnt)  Ch Qi)
+H,(w, —w m X,t)+— L b1 1
(=) = 1[fl( ) ci ooof cjl c?
and
4 2 4 2 2
P A e
52 r2 52 r2 X 52 t CSZ at
C> H, |6*w, (C> H o*w,
+| m,(F,-G,)——22—1 24| =2 2 4 G, |—t
{ (F2=Gy) C? cfj ox? (cfz cy 0 ®
8

cr ox? or (:2 ax? o7 c2 or*

C;, Ch sz fe
1 &fx0) G, 2 f(x0)]
cL o AL, oY

|:C2 C/, )} o'w, szo 64w1 1 0'w,
r2 0

+H,(w, —wy) = mz{fz(xt)"‘

Where,

met g K o _[ELoo_[Oak oL g,
P4, P4, pa P4, 4

The boundary conditions for simply supported 3. SOLUTION OF EQUATIONS
beams of the same length [ are assumed as follows Equations (7) and (8) representing forced
vibrations of a Timoshenko double-beam system with
" " . Pasternak layer in-between. The natural frequencies and
W (0.0 =w/(0.0)=w (.)=w.)=0, i=12- () the correspo%ding mode shapes of the syste?n should be
obtained by solving the undamped free vibration with
appropriate boundary conditions. Assuming time harmonic
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motion and using separation of variables, the solutions to . nr
equations (7) and (8) with the governing boundary X, (x)=sin(k,x) , k,= 5 =12,3,...
conditions (9) can be written in the form

By substituting solution (10) into equations. (7)

w.(x,1) = i){ (X)T.(), i=12 (10) and (8), the following ordinary differential equations for
! " " the Timoshenko double-beam model will be obtained

Where,

2

= | 1d'T, Cxk? 1 d’T
z {_ i [1 Cr21 knz e +_2(H En +Gyn,) pE -

= G CiCh Ci
1 d’T Ch ik’ Ck?
—| = (H,+ Gym,) |[—22+| Ch kit + (H, — Fg,) | 1+ =22 |+ G| 1+ 22 ||T, (11
[Ci( 1 0771):| P { K, +( 1) ngl Cr21 o'h Cfl Cr21 il
CZ k2 CZ k2 . CZ
- Hl[l"' o j"'Goﬂl(l"‘ P Ty X, =m| fi+ fl — 5 — o
[ CiCh CaCh Ca CiCh
and
& cLk> 1 d*T
Ly + 1+ C k+ =22+ = (H,— F,,+ Gy )} )
2 {cfz o T v S A
(H +Gyy) d2T"1+ C% ki +(H, - Fn,)| 1+ Ciz b, +Gygy| 1+ Cioky ||y (12)
0 2 t b2 "n 2 212 CSZ C,Z 0 2 CSZ Crzz n2
2 sz ( 2 kz H ( . 2
1+ =221 4 Gyn,| 1+ —22 T X, =my| fo+— fr——2—f)
|: ( CAZ C 2 0 ? CSZ CrZZ ' 2 ? CAZZ ? CSZZ C/'ZZ 2
Where, d*T d*T d’T
it Syt (Hy 4 Gyy)~ 4 BT, =0T, =0 (14)
k? k?
m=—"=, f=—" Where,
PA pA,
4. FORCED VIBRATIONS J,=CL[R+Ci k! + C2 (H, = Fn, +Gom,)]
Solving the undamped free vibration gives four s1

frequencies, two shear frequencies which are associated
with a shear vibration and two frequencies associated with

Jy=C5L[R+Cl ky + CZ (H, = Fyn, +Gon,)],
a transverse vibration with appropriate boundary

r2 ™n
52

conditions of ordinary differential equations for the R =1+ C,,2l kn2 R =1+ C,,Z2 kn2
unknown time functions. Equations (11) and (12) can be 1 2 2 T2 c2 e’
simplified as follows Lo 22
B =Cy[Cy k, +(H, = Fmy + Gy Ry,
. 2 — 2 2 1.4 _
d 7:111 f d T: (H + Go’h) d ]—;VZ +P1T”l _Q1T”2 -0 (13) 1)2 CSZZ [CbZ kn + (HZ FZUZ + GOZZ)RZ] '
d dr* de O =Cy[(H,+Gm)IR, , O, =C5, [(H,+Gn,)IR, -

and
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In order to find natural frequencies of the
structural model, the solution of equations (13) and (14)
could be expressed as

]—:11 = Cn ej“)nl ! T2 :Dn ej“)nl ' (15)

n

By substituting of equation (15) into equations
(13) and (14), we have

(w) —J,o; +R)C, —[0, - (H, + Gyp,)®;]1D, =0 (16)
and

_[éz_(Hz +GO’72)a):]Cn +(a):_j2w: +E)Dn =0- (17)

When the determinant of the coefficient matrix of
the C, and D, vanishes, the equations (16) and (17)

have non-trivial solutions. Setting the determinant equal to
zero yields

a)f (i +J,) a’f _(E +132 +j1jz —H\H, —H Gy, —H Gy, _Goz ) wj (18)
= (LB, +J,B-H0, - G0, —H 0, -Gy, Q)) a)f +BF-00, =0

From the equation (18), we obtain two natural
frequencies which are associated with a transverse

vibration “n =V , Dy = , and two much higher
natural shear frequencies which are associated with a shear

L @y =A 10) =44 .
vibration ") , ) * . The analytical

expressions for the free natural and shear frequencies of
the double-beam complex system with the influence of
rotary inertia and shear are determined and given in [8].

Shear effect makes two frequencies “»/ and ®n which
are associated with a transverse vibration lower. The two

higher shear frequencies = ") and " ") which are

associated with a shear vibration are of much lesser
technical interest [8]. Ordinary differential equations under
the influence of shear and rotary inertia for the unknown
time functions can be written as

d°7, d’7
Ji=g -~ (Hy+ Gon) =g 52+ BT, -0, T, =0 (19)
and

dZY;‘Z dzTnl
o=~ (Ha+ Gon) =3+ BT, =0, T, =0- (20)

In order to find natural frequencies associated
with a transverse vibration of the structural model, the
solution of equations (19) and (20) could be expressed as

i, t

O alot _ )
T;llzcnew ' 7;12_ € ' (21)

el

By substituting equation (21) into equations (19)
and (20), we obtain

(_lef + Pl) 5,, _[Ql - (Hl + Goﬂl)wj]ﬁn =0(22)
and
-[0, - (H, +Gyn,)w?1C, +(~J,w! + P,) D, =0- (23)

When the determinant of the coefficients in
equations (22) and (34) vanishes, non-trivial solutions for

the constants C, and En can be obtained, which yield

n

the following frequency equation:

(J1J, - H\H, —H Gon, —H ,Gonp, — 602771772)“);14 (24)
+(H.Q, + GomQ, +H ,0, + Gy, 0, — J, P, _J2Pl)a)mz +PF-0,0,=0-

Then from the characteristic equation (24), we obtain

. _ A+ -H,0,-H0Q, -G, - G0,

a)ﬂ =

! 2(JJ, - H\H, —H Gy, —H .Gy, — G02771772) (25)

~ VD
2(JJ, - H\H, —H,Gy, —H ,Gonp, — G02771772)

and

2 _ SP+LB-H,0,-HQ, -G, - G0,

nll —

2(JJ, —H,H, —H Gy, —H ,Gomp, — G02771772) (26)

D

+
2(JJ, —H,H, -H Gy, —H ,Gyp, — G02771772)

Where,
D =(H,Q, + GynQ, +H ,0, + Gyp,0, — J, P, _J2P1)2
+4(H,H, +H Gy, +H Gy, + G02771772 = J,) (BP,—0,0,)-

For each of the natural frequencies, the associated
amplitude ratio of vibration modes of the two beams is
given by

alt= §1 _O- (H,+ Gy, _ B~ J 0}, .(@n
" D, _lesi +h 0,-(H, +Go77z)a)5f

Following analysis for the undamped free

transverse vibration, particular solutions of non-

homogeneous differential equations (7) and (8) and
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negligible shear frequencies ) and “") which are
described by ordinary differential equations (19) and (20),
representing forced vibrations of a Timoshenko double
model and can be assumed in the following

) =3 X, D50 ) =3 X, Say 5,0 (28)

Substituting of equations (28) and (29) into
equations (7) and (8) results in the following form

5,0 3 b e (o n G, + (-, OIS} o

1. C2 "
(i G-

and

> ,(0 YA, = U, +1,G) /15, + (B = 0) 5,30, (30

n=1

o1 - C? "
e
Z (t) = 2my[J, @, — (H, +17,G0)]
nl -
e, —a,,)[(H, +m1.G,) (H, +1n,G,) - J,J,]
2mz [(H1+771G0)anll _Jl] J‘l
e, —a,,)[(H,+1n,Gy) (H,+1,Gy) = JyJ,] *°
and
2m,[(H,+n,G,)—-J, a
Z (1) = (H, +1,G0) =T, )]

Ha, —a,,)[(H,+mG,) (H, +1,G,)-J,J,]

+ 2m,[J, — (H, +1n,Gy) ]
e, —a,, ) [(H, +1,G)(H, +1,Gy) - J,J,]

From equation (33) we have
S =i£ Z,.(s)sin[aw, (t—s)ds , i=1,1I- (36)
a)ni

By combining equations (28), (29) and (36), the
forced vibrations of an elastically connected Timoshenko
double-beam system can be described by

wy (x,1) = i sin (k,x) i = jo Z, (s)sin[o, (t—s)]ds §7)

n=1 i=I ni

and

f

By multiplying the relations (30) and (31) by
X,,, then integrating them with respect to x from O to
[ and using orthogonality condition, we have

é{[J1 —a, (H+n1,G )18, +(B-a, 0)S,} 31)
:Z%L[ X, (/HC%f;f%/;jdx

and

é‘,{[‘/z —(H, +1,Gy) 0,118, + (B, -t Q,) S, }a, (32)
2 (e i)

By combining equations (27), (32) and (33), after
some algebra, we obtain

S, +@>S,=2,t), i=11 (33)
Where,
! 1+ ChLo L)
J.O A+C72ﬁ_ﬁfi Sin (knx)dx
sl sl ~rl (34)
1 . C,,Z2 al
+—f, - sin (k,x)d
(fz C.\?z S C.\?z Cr22 2] (k,x) dx
! 1 - ci o)
[ St g Fum e S fsin (k) dx
s1 512 rl (35)
1 . C )
(f2+%f2_cfzbé32 2]5“1 (knx) dX'

w, (x,£) :i sin (knx)i Dt j Z (s)sin[, (t—s)]ds- (38)
n=1 = @, °

Now these general solutions (37) and (38) are
used to find the vibrations of the two coupled Timoshenko
beams for certain exciting loadings.

In the following, we conduct an analysis of
forced vibrations for case of uniformly distributed
continuous harmonic load. For simplicity of further
analysis, it is assumed that only one of the two beams is
subjected to the exciting load (see Figure-3). Without loss
of generality, we suppose

Silx,t) =gsin (Q1) , fo(x,)=0- (39)
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Figure-3. Timoshenko double-beam complex system with Pasternak layer
in-between subjected to harmonic uniform distributed continuous load.

Substituting equation (39) into equations (34) and (35), we obtain

Agm[J, v, — (H, +1,G,)]sin (Qf (0%
Z ()= qm[J, a,, —(H, +1,G,)]sin () 1->2 (40)
nrx(a,, —a,,) [(H, +mG,) (H, +1,G,) - J,J,] Ca
and
4 H,+n,G,)-J, a,]sin (Qt (0%
Zn[[ (t) — qml[( 2 772 0) 2 n[] ( ) 1__2 . (41)
nz(a,, —a,;) [(H,+mG,) (H, +1,Gy) — JJ,] Cy
Substituting equations (40) and (41) into equations (37) and (38) gives
0 11
wi(x,1) = sin (k,x) [Anlsin Q1)+ B,sin (a)nt)} , n=1,35,.. (42)
n=1 i=I
and
0 11
w,(x,t) = ZSin (k,x) {Anz sin (Q¢) + Zam. B, sin (a)nt)} , n=13,5,.. (43)
n=1 i=1
Where, _ QlJ; a,, —(H, +1,G,)]
" @y (wfl -7 (o, =, ) [(H, +mGo) (H, +17,Go) = I, /] a
oo V, a,, —(H, +1,G,)] B, - S QUH, +11,Go) = I, 2wl M,
! ! (0% -2 (@, —a,,) [(H, +1,G,) (H, +11,G,) — J,J,] O (@ = Q%) (e, — 0, ) [(Hy +mGo) (H +17,Go) = J1 /]
i [(H, +1,Go) - J,2,]
(wfll 792) (e — o) [(Hy +mGo) (H, +1,Go) = 1T, ] ‘ Also,
4. = { aylJ; @y = (H, +17,Gy)]
" ' (a’f/ 792) (anl 7anll)[(H1+771G0) (Hz +772G0)7J1J2] M. = 4qm1 [JZ i _(HZ +UZGO)] 1-— sz
a,,[(H, +1,Gy) - J,a,,] " nx (@, — o) [(H +mGy) (H, +1,Gy) — J,J,] Cszl
i (w:u _Qz) (an[ _anll) [(H1 +771G0) (Hz +772Go)_J1Jz] }
Ignoring the free response, the forced vibrations
and of the Timoshenko double-beam system can be obtained

by
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w (1) =sin (1) Y A, sin (k,x) , n=135,.. (44)
n=1

and
w, (x,1) =sin (Q1) D 4,,sin (k,x) , n=135,... (45)
n=1

The following fundamental conditions of
resonance and dynamic vibration absorption have practical
significance:

1- Resonance

Q=w,, n=1305,. (46)

ni !

2- Dynamic vibration absorption

wfl [(H, +1,Gy) =T, 2] - wju [V, @, —(H, +11,G)]

Q=
Jola, —a,,) (47)

2
A. =M Jz (anl _anll)
2 = Mm 2 2

n

4,=0-

,

nil — @War

5.NUMERICAL RESULTS AND DISCUSSIONS

In the following, the effects of Pasternak layer on
the steady-state vibration amplitudes 4, and A4, , are
discussed. For simplicity, it is assumed that both beams
are geometrically and physically identical [9]. The values

of the parameters characterizing properties of the system
are shown in Table-1.

Hl:HZ v T =1, Fzzgﬂ, 03431 (48)

Table-1. Values of the parameters characterizing properties of the system.

l E A K

10 m 1x10" Nm? | 5x10% m® 2x10° Nm™
k p I G

5/6 2x10° kgm® | 4x10* m* | 0.417x10" Nm?

If the axial compressions vanish, for the
Timoshenko double-beam we have

wz] _ Jo B+ B - H,0,+ G0, + Gy, O
n 2
2(JJ, - HH, —H Gyn, —H .Gy, — Gy 1m1117,) (49)
- JD'
2(JJ, - H\H, -H Gy, —H ,Gy1, — Go2 m1,)
and
2 _ Joh + B = HyO, + GO, + Gy, O
nll
2(JyJ, —H,H, ~H .Gy, —H .Gy, — Gg 11,) (50)
.\ JD'
2(J\J,—H,H,—H Gy, —H ,Gym, — Gg M)
Also,

ot = g _ O, —(H,+Gyn) @) _
"D -Jw’ +P

n

Py = J,0; (51)
0, —(H,+Gyn,) a)nz[

and

4 g _ 0, —(H,+Gyp) @y _

= 2
—Jiw, +f

P, - J,0}
al= = 2~ 2Dy (52)

0, - (H, +Gyn,) wfﬂ

n

Where,

D' =(H,0, +Gyp0, +H 0, + G, 0, — J,P, — J,B)?
+4(H,H, +H.,Ggn, +H Gy + Gg 111y, = J1J,) (B, — 0,0,)

To determine the effect of compressive axial load
on the steady-state vibration amplitudes 4, and 4,, of
the system, the results under compressive axial load and

those without axial load are compared. Introducing the
relation

Al’l An
(/71=A—311 (/)2:14_32 (53)

Using non-dimensional ratio

§=— (54)
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(EIZ*/1?)
1+ (EIx® | GAkI?)
Euler load for Timoshenko beam, which is the smallest
load at which the single beam ceases to be in stable
equilibrium under axial compression [12]. For the case of
uniformly distributed harmonic load, the steady-state
vibration amplitudes for the Timoshenko beams
(A4,,A,, A, A°,) can be determined. We accounted
the results for three case of shear modulus of Pasternak
layer G, =0, 1000, 100000 . If we introduce G, =0

in the whole equations of this paper we can obtain the
vibration equations of the Timoshenko double-beam
system on Winkler elastic layer that the results are verified
by comparing with those available in Ref [9]. With the

vibration mode number 7 = 3 and the exciting frequency
Q=0.6w,,, the effects Pasternak layer on the steady-

and A4, of the

Timoshenko beam represented by the ratios ¢, andg,,
shown in Figures-4 to 15, respectively. As can be seen, the
ratio ¢, decreases with the increase of the axial
compression, which implies that the magnitude of the
steady-state vibration amplitude A, become smaller

is known as the

Where, P=PF, =

state vibration amplitudes 4,

when the axial compression increases and the ratio ¢,

increases with the increase of the axial compression,
which implies that the magnitude of the steady-state

vibration amplitude A4,, become larger when the axial
compression increases . It can be observed that the effect
of compressive axial load on the magnitude of A, is

almost independent of the axial compression ratio ¢ of
the two beams whereas it is significantly dependent on the
magnitude of 4, [9]. As we said before in this paper the
effects of Pasternak layer on forced transverse vibration of

a Timoshenko double-beam system with effect of
compressive axial load is analyzed.

------ =05

-t

5

Figure-4. Relationship between ratio ¢, and dimensionless
parameter s for different axial compression ratio

¢, Gy = 0.
14

- =01

------- {=05

(=109
S 12 o

“J"
>

0 0.2 0.4 0.6 0.8 1

S

Figure-5. Relationship between ratio ¢, and
dimensionless parameter s for different axial
compression ratio ¢ , G, =1000
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1.4 14

cesg =041 e B=0

------ {=05 e G = 1000

(=09 G = 100000
s 12 1 & i
”." -
.
P
1 = =
0 02 04 0.6 0.8 1 ) k= . .
S 0 02 04 06 0.8 1

Figure-6. Relationship between ratio ¢, and parameter s

for different axial compression ratio ¢, G, = 100000 Figure-8. Relationship between ratio ¢, and parameter s

for different shear modulus of Pasternak layer, ¢ =0.5

14
1.4
e =0
-------- G = 1000
G = 100000 S St
] s G = 1000
G = 100000
§ 12 o
o g g 12 A
- g
- o
o a‘/l
- 3 - /"’
I e A i A A . - ad
0 0.2 0.4 0.6 08 1 L.
s 1 =
0 02 0.4 0.6 0.8 ]

Figure-7. Relationship between ratio ¢, and parameter §
for different shear modulus of Pasternak layer, ¢ = 0.1 Figure-9. Relationship between ratio ¢, and parameter s
for different shear modulus of Pasternak layer, { = 0.9
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1.6
~wsea =011
....... {=05
14 F
{=09
s .
12 b i
e .
0 0.2 04 0.6 08
S
Figure-10. Relationship between ratio ¢, and
dimensionless parameter s for different axial
compression ratio § , G, =0
1.6
womvad = 0.1
b S| g=103
{=09
o~
=
12 L
] L .
0 0.2 04 0.6 0.8

Figure-11. Relationship between ratio ¢, and parameter
s for different axial compression ratio ', G, =1000

1.6
~=-¢=01
——————— {=05
14 F
(=09
™~
=3
12 e -
- o
- —_
e —
—"" —
e
B
- " x
0 0.2 0.4 0.6 0.8

Figure-12. Relationship between ratio ¢, and parameter
s for different axial compression ratio ¢, G, =100000

1.4
SN
-------- G = 1000
G = 100000
]
™~ 1_2 - -
s >
i
‘/
e
e
’/
e
o
1 > M M N M
0 0.2 0.4 0.6 0.8 1
S

Figure-13. Relationship between ratio ¢, and parameter
s for different shear modulus of Pasternak layer, ¢ =0.1

1.6
_____ G=
........ G = 1000
14 |
G = 100000 P
. | -
s g
P g
12 g
=
'//
Bt
-/
! . ; : :
0 0.2 0.4 0.6 0.8 1

Figure-14. Relationship between ratio ¢, and parameter
s for different shear modulus of Pasternak layer, £ =0.5

1.4
SRy G=
-------- G = 1000 A
G = 100000 B
J ’/f
s 12 '//
i
il
‘/
-
-
1 il " :
0 0.2 04 0.6 08 1
S

Figure-15. Relationship between ratio ¢, and parameter
s for different shear modulus of Pasternak layer, £ =0.9
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Effects of Pasternak layer cannot be observed on
Figures 4 to 15. Numerical values of the ratios ¢, and @,
for different shear modulus of Pasternak layer with
different axial compression ratio " of the two beams is
shown in Table-2. Numerical results of the ratios ¢, and

@, show that the difference with ratios ¢, and ¢,

decrease with increasing shear modulus of Pasternak layer
for different axial compression ratio . But the
differences among the results is too little and when we
compare them with Rayleigh double beam, can be found
that the effects of Pasternak layer on Rayleigh double
beam is more than Timoshenko double beam.

Table-2. Effects of shear modulus of Pasternak layer on the steady-state vibration amplitudes
ratios ¢, and ¢, for different compressive axial ratio ¢

0 0.2 0.4 0.6 0.8 1
(¢ =01)
(G, =0) 1 1.0358 1.0737 1.1142 1.1575 1.2041
(G, =1000) 1 1.0358 1.0737 1.1142 1.1575 1.2041
(G, =100000) 1 1.0357 1.0737 1.1141 1.1573 1.2040
¢ (¢ =0.5)
(G, =0) 1 1.0358 1.0735 1.1134 1.1557 1.2006
(G, =1000) 1 1.0358 1.0735 1.1134 1.1557 1.2006
(G, =100000) 1 1.0358 1.0735 1.1134 1.1557 1.2005
¢ (¢ =0.9)
(G, =0) 1 1.0358 1.0734 1.1129 1.1543 1.198
(G, =1000) 1 1.0358 1.0734 1.1129 1.1543 1.198
(G, =100000) 1 1.0357 1.0735 1.1129 1.1544 1.198
9,(¢ =0.1)
(G, =0) 1 1.0393 1.0811 1.1256 1.1733 1.2247
(G, =1000) 1 1.0393 1.0811 1.1256 1.1733 1.2246
(G, =100000) 1 1.0393 1.0810 1.1255 1.1732 1.2245
9,(¢ =0.5)
(G, =0) 1 1.0537 1.1111 1.1723 1.2379 1.3083
(G, =1000) 1 1.0537 1.1111 1.1723 1.2379 1.3083
(G, =100000) 1 1.0537 1.1110 1.1722 1.2378 1.3082
?,(£=0.9)
(G, =0) 1 1.0685 1.1425 1.2225 1.3001 1.403
(G, =1000) 1 1.0685 1.1425 1.2225 1.3001 1.403
(G, =100000) 1 1.0685 1.1424 1.2224 1.3090 1.4028
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1.4

On the other hand, with the axial compression
ratioc £ =0.5 and the exciting frequency Q = 0.6®,, ,
the effects of Pasternak layer on the steady-state vibration e =3
amplitudes A, and A4,, are shown in Figures-16 to 27 | 5 =§
n=
for different mode shape number 72 , respectively. It can be S b
seen that, with the same axial compression, the ratios ¢, e
and ¢, diminish with the increasing vibration mode P
number 72, which implies that the magnitudes of the e g
steady-state vibration amplitudes A4, and A, get s S g
I | leaznee== F=="C ; . .
smaller when the vibration mode number 7 becomes o 03 04 05 0% :
larger [9]. s
14 Figure-18. Relationship between ratio ¢, and
_ dimensionless parameter s for different mode
s = number n for G, =100000
...... n= )
n=7
1.4
$ 12 »
s cimims G=10
P N RS G = 1000
- G = 100000
Bl s Aol S 12
R - :
0 0.2 0.4 0.6 0.8 1
5
Figure-16. Relationship between ratio ¢, and i g :
] ~ - i i i i

dimensionless parameter s for different mode 0 02 0.4 0.6 08 1
s
number n for G, =0

Figure-19. Relationship between ratio ¢, and parameter

4 s for different shear modulus of Pasternak layer, n =3
14
—
------ n=>5 ;
n=7( 1 1 | =r=-- G=0
| =l | ([ G = 1000
S e _ _ G = 100000 |
S $ 12
-
| lesaameespz=n=s
0 02 0.4 0.6 0.8 1
g TR S
- - - - ! —————— * *
Figure-17. Relationship between ratio ¢, and 0 02 04 0.6 08
. . . s
dimensionless parameter s for different mode
number 7 for G, :1000, Figure-20. Relationship between ratio ¢, and parameter

s for different shear modulus of Pasternak layer, n = 5.
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Figure-21. Relationship between ratio ¢, and parameter

s for different shear modulus of Pasternak layer, n =7 )
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Figure-22. Relationship between ratio ¢, and
dimensionless parameter s for different mode
number n for G, =0
1.4
S
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n= -~
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Figure-23. Relationship between ratio ¢, and
dimensionless parameter s for different mode

number n for G, =1000
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-
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Figure-24. Relationship between ratio ¢, and
dimensionless parameter s for different mode
number n for G, =100000
1.4
——= G=0
-------- G = 1000 B
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~ 12 F >
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0 0.2 0.4 0.6 0.8

Figure-25. Relationship between ratio ¢, and parameter
s for different shear modulus of Pasternak layer, n =3

1.4

IR . [,
-------- G = 1000
G = 100000
§_' 1.2
l = = = i
0 02 0.4 0.6 0.8

Figure-26. Relationship between ratio ¢, and parameter
s for different shear modulus of Pasternak layer, n =95
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1.4
SE— G =
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Figure-27. Relationship between ratio ¢, and parameter s for different shear

modulus of Pasternak layer, n =7 )

Table-3 shows the effects of compressive axial

load and shear modulus of Pasternak layer on difference
between the steady-state vibration amplitudes ratios ¢,
and ¢, of the Rayleigh beam for different mode number
n . It can be observed that the differences between ratios

¢, and @, of the Timoshenko beam increase with
increasing the dimensionless parameter s . Also we can
see that the ratios ¢, and ¢, decrease with increasing of

the shear modulus of Pasternak layer for different mode
shape numbers.
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Table-3. Effects of shear modulus of Pasternak layer on the steady-state vibration
amplitudes ratios ¢, and ¢, for different mode shape number n_

S
0 0.2 0.4 0.6 0.8 1

@ (n=23)
(G, =0) 1 1.0358 1.0735 1.1134 1.1557 1.2006
(G, =1000) 1 1.0358 1.0735 1.1134 1.1557 1.2006
(G, =100000) 1 1.0358 1.0735 1.1134 1.1557 1.2005

@ (n=5)
(G, =0) 1 1.0133 1.0268 1.0406 1.0547 1.0692
(G, =1000) 1 1.0133 1.0268 1.0406 1.0547 1.0691
(G, =100000) 1 1.0133 1.0268 1.0406 1.0547 1.0691

@ (n=T)
(G, =0) 1 1.0071 1.0143 1.0215 1.0289 1.0363
(G, =1000) 1 1.0071 1.0143 1.0215 1.0289 1.0363
(G, =100000) 1 1.0071 1.0143 1.0215 1.0289 1.0363

@,(n=3)
(G, =0) 1 1.0537 1.1111 1.1723 1.2379 1.3038
(G, =1000) 1 1.0537 1.1111 1.1723 1.2379 1.3038
(G, =100000) 1 1.0537 1.1110 1.1722 1.2378 1.3037

@,(n=5)
(G, =0) 1 1.0199 1.0404 1.0613 1.0828 1.1049
(G, =1000) 1 1.0199 1.0404 1.0613 1.0828 1.1049
(G, =100000) 1 1.0199 1.0403 1.0613 1.0828 1.1048

@,(n=T7)
(G, =0) 1 1.0107 1.0214 1.0324 1.0435 1.0548
(G, =1000) 1 1.0107 1.0214 1.0324 1.0435 1.0548
(G, =100000) 1 1.0106 1.0214 1.0324 1.0435 1.0547

6. CONCLUSIONS

Based on the Timoshenko beam theory, the
effects of Pasternak layer on forced transverse vibration of
an elastically connected simply supported Timoshenko
double-beam, under compressive axial loading for one
case of particular excitation loading are studied. The
dynamic response of the system caused by arbitrarily
distributed continuous loads is obtained. The magnitudes

of the steady-state vibration amplitudes of the beam are
dependent on the axial compression and shear modulus of
Pasternak layer. The properties of the forced transverse
vibrations of the system are found to be significantly
dependent on the compressive axial load and shear
modulus of Pasternak layer. The important result that this
paper put emphasize on it is that the magnitudes of the
steady-state vibration amplitudes become smaller when
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the shear Pasternak modulus increases and Pasternak layer
can reduces the magnitudes of the steady-state vibration
amplitudes more than Winkler elastic layer. But base on
Timoshenko theory which takes into account the effects of
shear deformation and rotary inertia, Pasternak layer
doesn’t have considerable effect on the magnitudes of the
steady-state vibration amplitudes. Thus the Timoshenko
beam-type dynamic absorber with Pasternak layer acts
with a little more efficiency than Winkler elastic layer.
Effects of Pasternak layer on Rayleigh double-beam is
more than Timoshenko double-beam. Thus the
Timoshenko beam-type dynamic absorber with Pasternak
layer can be used to suppress the excessive vibrations of
corresponding beam systems instead of those with Winkler
elastic layer. Analytical forms found can be used in the
optimal design of a new type of a dynamic vibration
absorber. The beam-type dynamic damper is an accepted
concept for a continuous dynamic vibration absorber
(CDVA).

Nomenclature

Transverse displacements of

w=w(x,1) the beams
Global rotation of the cross-
6w/ Ox section
T.(1) Unknown time function
Known mode shape function
X, (x) for simply supported single
beam
v =w(x,t) Bending rotation

Unknown time  function
corresponding to the natural
frequency o,; .

S () (=11

X Eigen-function

m

q(x)

Amplitude of the load

Q

Exciting frequency of the load

Ay Ay

Steady-state vibration
amplitudes of the two beams
without axial compression

S

=

Natural frequencies of the
system

Shear modulus

Area of the beam cross-
section

Shear factor

Bending moments

Young modulus

Second moment of the area of
the cross-section

D~ mlEE e o

Mass density

K Spring constant

G Shear modulus of Pasternak
0 layer
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