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ABSTRACT 

Based on Timoshenko beam theory, the forced transverse vibrations of an elastically connected simply supported 
Timoshenko double-beam system with Pasternak layer in-between subjected to arbitrarily distributed continuous loads 
under compressive axial load are investigated. It is assumed that the two beams of the system are continuously joined by a 
Pasternak layer. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The 
effects of Pasternak layer on the forced vibrations of the Timoshenko double-beam system are discussed for one case of 
particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly 
dependent on the compressive axial load and shear modulus of Pasternak layer. Vibrations caused by the harmonic exciting 
forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The important result 
that this paper put emphasize on it is that the magnitudes of the steady-state vibration amplitudes become smaller when the 
shear Pasternak modulus increases and Pasternak layer can reduces the magnitudes of the steady-state vibration amplitudes 
more than Winkler elastic layer. But base on Timoshenko theory which takes into account the effects of shear deformation 
and rotary inertia, Pasternak layer doesn’t have considerable effect on the magnitudes of the steady-state vibration 
amplitudes. Thus the Timoshenko beam-type dynamic absorber with Pasternak layer acts with a little more efficiency than 
Winkler elastic layer. Effects of Pasternak layer on Rayleigh double-beam is more than Timoshenko double-beam. Thus 
the Timoshenko beam-type dynamic absorber with Pasternak layer can be used to suppress the excessive vibrations of 
corresponding beam systems instead of those with Winkler elastic layer. Numerical results of the present method are 
verified by comparing with those available in the literature. 
 
Keywords: forced vibration, Timoshenko double-beam, compressive axial load, Pasternak layer. 

 
1. INTRODUCTION 

A great number of mechanical systems are 
complex structures composed of two or more basic 
mechanical systems whose dynamic behavior is 
conditioned by their interaction. The systems connected by 
an elastic layer constitute one group of such mechanical 
structures which are commonly encountered in 
mechanical, construction and aeronautical industry. 
Mechanical systems formed by elastic connection of their 
members, due to the nature of the dynamic interaction 
conditioned by elastic connections are characterized by 
complex vibration and a higher number of natural 
frequencies. Since the number of natural frequencies 
depends on the number of basic elements joint together, 
such mechanical systems are exposed to an increased 
likelihood of creating resonance conditions which can 
cause breakage and damage. Such models are important as 
they give the initial approximation of the solution and a 
general insight into a dynamic behavior of the system at 
slight motion. The problem concerning the vibrations of 
beams joint by a Winkler elastic layer has attracted the 
interest of a large group of scientists. The problem of two 
elastically connected beams joint by the Winkler elastic 
layer emerged in order to determine the conditions for the 
behavior of the system acting as a dynamic absorber in 
technical practice. 

A mathematical model was developed by Seelig 
and Hoppman [1]. They investigated the problem of an 
impulse load effect on a beam and produced a system of 
partial differential equations describing its vibration. The 
obtained theoretical and experimental results confirmed a 
sound approximation of an analytical solution obtained for 
slender beams at small transverse motions using the Euler-
Bernoulli theory. 

Oniszczuk [2, 3] analyzed the problem of free 
and forced vibration of two elastically connected Euler-
Bernoulli beams. He determined analytical solutions for 
eigen-frequencies, amplitudinous functions and vibration 
modes. He discussed the effect of stiffness which the 
elastic interlayer had on the frequencies and amplitudes of 
the system. He determined the conditions for the 
occurrence of resonance and the behavior of the system as 
a dynamic absorber. The analysis of the system composed 
of two connected beams was carried on by Zhang et al. [4, 
5]. In their work, free and forced vibrations by two 
elastically connected Euler-Bernoulli beams affected by 
axial compression forces are investigated. They presented 
analytical solutions for natural frequencies of the system 
in the function of axial compression force impact and their 
effect on the vibration amplitude. They determined the co-
dependency between the system’s critical force and the 
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Euler critical load in the function of an axial force of the 
other beam. 

It has been shown that the behavior of foundation 
materials in engineering practice cannot be represented by 
foundation model which consists of independent linear 
elastic springs. In order to find a physically close and 
mathematically simple foundation model, Pasternak 
proposed a so-called two-parameter foundation model 
with shear interaction. Wang et al. [6, 7], studied natural 
vibrations of a Timoshenko beam on a Pasternak-type 
foundation. Frequency equations are derived for beams 
with different end restraints. A specific example is given 
to show the effects of rotary inertia, shear deformation, 
and foundation constants on the natural frequencies of the 
beam. 

Stojanovic et al. [8] analyzed free vibration and 
static stability of two elastically connected beams with 
Winkler elastic layer in-between with the influence of 
rotary inertia and transverse shear. The motion of the 
system is described by a homogeneous set of two partial 
differential equations, which is solved by using the 
classical Bernoulli-Fourier method. The boundary value 
and initial value problems are solved. The natural 
frequencies and associated amplitude ratios of an 
elastically connected double-beam complex system and 
the analytical solution of the critical buckling load are 
determined. The presented theoretical analysis is 
illustrated by a numerical example, in which the effect of 
physical parameters characterizing the vibrating system on 
the natural frequency, the associated amplitude ratios and 
the critical buckling load are discussed. Stojanovic et 
Kozic [9] discussed the case of forced vibration of two 
elastically connected beams with Winkler elastic layer in-
between and the effect of axial compression force on 
amplitude ratio of system vibration for three types of 
external forcing (arbitrarily continuous harmonic 
excitation, uniformly continuous harmonic excitation and 
concentrated harmonic excitation). They determined 
general conditions of resonance and dynamic vibration 
absorption. In paper [10], Stojanovic et al. discussed the 
analytic analysis of static stability of a system consisting 
of three elastically connected Timoshenko beams on an 
elastic foundation. They provided expressions for critical 
force of the system under the influence of elastic Winkler 
layers. Stojanovic et al. [11] using the example of multiple 
elastically connected Timoshenko and Reddy-Bickford 
beams, determined the analytical forms of natural 
frequencies, their change under the effect of axial 
compression forces and the conditions for static stability 
for a different number of connected beams. 

As an extension of the work of Stojanovic et al. 
[9], Effects of Pasternak layer on forced transverse 
vibration of a Timoshenko double-beam system with 
effect of compressive axial load are studied in the present 
paper. 
 
 
 

2. MATHEMATICAL MODEL 
The following assumptions is considered: (a) the 

behavior of the beam material is linear elastic; (b) the 
cross-section is rigid and constant throughout the length of 
the beam and has one plane of symmetry; (c) shear 
deformations of the cross-section of the beam are taken 
into account while elastic axial deformations are ignored; 
(d) the equations are derived bearing in mind the 
geometric axial deformations; (e) the axial forces F  
acting on the ends of the beam are not changed with time; 
(f) the two beams have the same effective material 
constants. 

Figure-1 shows Timoshenko double-beam system 
with Pasternak layer in-between with length of l , that 

subjected to axial compressions 1F  and 2F  that are 

positive in compression and arbitrarily distributed 

transverse continuous loads 1f  and 2f  that are positive 

when they act downward. 
 

 
 

Figure-1. Timoshenko double-beam complex system with 
Pasternak layer in-between. 

 
An element of deflected differential layered-beam 

of length dx  with Pasternak layer between two cross-
sections taken normal to the deflected axis to the beam is 
shown in Figure-2. 
 

 
 

Figure-2. Deflected differential layered-beam element 
with Pasternak layer in-between. 
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The set of coupled differential equations of 
forced transverse vibration of a double-beam system with 
effect of compressive axial load with Winkler elastic layer 
in-between have the following form [9]. 
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If we consider Pasternak layer instead of Winkler elastic layer, the above equations can be changed in the following form: 
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By eliminating 1  from equation (3) and 2  from equation (4), the following two fourth-order partial differential 

equations can be obtain 
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Equations (5) and (6) can be reduced to fourth-order partial differential equations for forced vibration of the Timoshenko 
double-beam model 
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The boundary conditions for simply supported 

beams of the same length l  are assumed as follows 
 

 2 ,1,  0),(),(),0(),0( itlwtlwtwtw iiii    (9) 

 
 

3. SOLUTION OF EQUATIONS 
Equations (7) and (8) representing forced 

vibrations of a Timoshenko double-beam system with 
Pasternak layer in-between. The natural frequencies and 
the corresponding mode shapes of the system should be 
obtained by solving the undamped free vibration with 
appropriate boundary conditions. Assuming time harmonic 
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motion and using separation of variables, the solutions to 
equations (7) and (8) with the governing boundary 
conditions (9) can be written in the form 
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By substituting solution (10) into equations. (7) 

and (8), the following ordinary differential equations for 
the Timoshenko double-beam model will be obtained 
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4. FORCED VIBRATIONS 

Solving the undamped free vibration gives four 
frequencies, two shear frequencies which are associated 
with a shear vibration and two frequencies associated with 
a transverse vibration with appropriate boundary 
conditions of ordinary differential equations for the 
unknown time functions. Equations (11) and (12) can be 
simplified as follows 
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In order to find natural frequencies of the 
structural model, the solution of equations (13) and (14) 
could be expressed as 
 

 t
nn

t
nn

nn DTCT  j
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 j
1 e ,  e                             (15) 

 
By substituting of equation (15) into equations 

(13) and (14), we have 
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When the determinant of the coefficient matrix of 

the nC  and nD  vanishes, the equations (16) and (17) 

have non-trivial solutions. Setting the determinant equal to 
zero yields 
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From the equation (18), we obtain two natural 

frequencies which are associated with a transverse 

vibration 1 nI , 3 nII , and two much higher 
natural shear frequencies which are associated with a shear 

vibration 2)(  snI , 4)(  snII . The analytical 
expressions for the free natural and shear frequencies of 
the double-beam complex system with the influence of 
rotary inertia and shear are determined and given in [8]. 

Shear effect makes two frequencies nI  and nII  which 
are associated with a transverse vibration lower. The two 

higher shear frequencies )(snI
 and )(snII

 which are 
associated with a shear vibration are of much lesser 
technical interest [8]. Ordinary differential equations under 
the influence of shear and rotary inertia for the unknown 
time functions can be written as 
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In order to find natural frequencies associated 

with a transverse vibration of the structural model, the 
solution of equations (19) and (20) could be expressed as 
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By substituting equation (21) into equations (19) 

and (20), we obtain 
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When the determinant of the coefficients in 

equations (22) and (34) vanishes, non-trivial solutions for 

the constants nC  and nD  can be obtained, which yield 

the following frequency equation: 
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Then from the characteristic equation (24), we obtain 
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For each of the natural frequencies, the associated 

amplitude ratio of vibration modes of the two beams is 
given by 
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Following analysis for the undamped free 

transverse vibration, particular solutions of non-
homogeneous differential equations (7) and (8) and 
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negligible shear frequencies )(snI
 and )(snII

 which are 
described by ordinary differential equations (19) and (20), 
representing forced vibrations of a Timoshenko double 
model and can be assumed in the following 
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Substituting of equations (28) and (29) into 

equations (7) and (8) results in the following form 
 











 


 

12
1

2
1

2
1

12
1

11

1
110111

 

1
                  

} ) ( )]([ {  )(

f
CC

C
f

C
fm

SQPSGHJxX

rs

b

s

n

II

Ii
ninininin



 
 (29) 

and 











 


 



22
2

2
2

2
2

22
1

22

1
2

1
2

1
0222

 

1
                 

} ) ( ] )([ { )(

f
CC

C
f

C
fm

SQPSGHJxX

rs

b

s

n

II

Ii
nininininin



   (30) 

 

By multiplying the relations (30) and (31) by 

mX , then integrating them with respect to x  from 0  to 
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By combining equations (27), (32) and (33), after 

some algebra, we obtain 
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From equation (33) we have 
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By combining equations (28), (29) and (36), the 

forced vibrations of an elastically connected Timoshenko 
double-beam system can be described by 
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Now these general solutions (37) and (38) are 

used to find the vibrations of the two coupled Timoshenko 
beams for certain exciting loadings. 

In the following, we conduct an analysis of 
forced vibrations for case of uniformly distributed 
continuous harmonic load. For simplicity of further 
analysis, it is assumed that only one of the two beams is 
subjected to the exciting load (see Figure-3). Without loss 
of generality, we suppose  
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Figure-3. Timoshenko double-beam complex system with Pasternak layer 
in-between subjected to harmonic uniform distributed continuous load. 

 
Substituting equation (39) into equations (34) and (35), we obtain 
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Substituting equations (40) and (41) into equations (37) and (38) gives 
 

,...5 ,3 ,1,  )( sin)( sin )( sin ),(
1

11 







 



 

ntBtAxktxw
n

II

Ii
nninn                                                             (42) 

 
and 
 

,...5 ,3 ,1,  )( sin )( sin )( sin),(
1

22 







 



 

ntBtAxktxw
n

II

Ii
nnininn                                                     (43) 

 
Where, 
 





































 
])( )[( )( )(

])[(
            

])( )[( )( )(

)]( [
 

,  
])( )[( )( )(

])[(
                  

])( )[( )( )(

)]( [
 

21022011
22

2022

21022011
22

0222
2

21022011
22

2022

21022011
22

0222
1

JJGHGH

JGH

JJGHGH

GHJ
MA

JJGHGH

JGH

JJGHGH

GHJ
MA

nIInInII

nInII

nIInInI

nIInI
Tn

nIInInII

nI

nIInInI

nII
Tn













 

 
and 
 

T
nInIInIInII

nI
nII

T
nInIInInI

nII
nI

M
JJGHGH

JGH
B

M
JJGHGH

GHJ
B

])( )[( )( )(
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







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Also, 
 








 






2
1

2

21022011

02221 1 
])( )[( )( 

)]( [ 4

snIInI

nII
T CJJGHGHn

GHJqm
M


  

 
Ignoring the free response, the forced vibrations 

of the Timoshenko double-beam system can be obtained 
by 
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,...5 ,3 ,1,  )( sin )( sin),(
1

11  




nxkAttxw
n

nn
 (44) 

and 
 

,...5 ,3 ,1,  )( sin )( sin),(
1

22  




nxkAttxw
n

nn
 (45) 

 
The following fundamental conditions of 

resonance and dynamic vibration absorption have practical 
significance: 
1- Resonance 
 

,...5 ,3 ,1,   nni                                           (46) 

 
2- Dynamic vibration absorption 




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
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)(

)]( [ ] )[( 
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2

2

2
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2
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2

2

n
nInII

nIInI
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nIInI

nInIInIInI

A
J

MA

J

GHJJGH







 (47) 

 
5. NUMERICAL RESULTS AND DISCUSSIONS 

In the following, the effects of Pasternak layer on 
the steady-state vibration amplitudes 1nA  and 2nA  are 

discussed. For simplicity, it is assumed that both beams 
are geometrically and physically identical [9]. The values 
of the parameters characterizing properties of the system 
are shown in Table-1. 
 

10,  ,  ,  122121   FFHH    (48) 

 

 
Table-1. Values of the parameters characterizing properties of the system. 

 

l  E  A  K  

m10  -210 Nm101  
2-2 m105  

-25 Nm102  

k    I  G  

65  -33 kgm102  4-4 m104  
-210 Nm10417.0   

 
If the axial compressions vanish, for the 

Timoshenko double-beam we have 
 

) (2
         

) ( 2
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 (49) 

 
and 
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Also, 
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and 
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Where,  
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2
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To determine the effect of compressive axial load 

on the steady-state vibration amplitudes 1nA  and 2nA  of 

the system, the results under compressive axial load and 
those without axial load are compared. Introducing the 
relation 
 

0
2

2
20

1

1
1 ,  

n

n

n

n

A

A

A

A
                                                 (53) 

 
Using non-dimensional ratio 
 

P

F
s 1                                                                           (54) 
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Where, 
)(1

)(
22

22

GAklEI

lEI
PP T 




  is known as the 

Euler load for Timoshenko beam, which is the smallest 
load at which the single beam ceases to be in stable 
equilibrium under axial compression [12]. For the case of 
uniformly distributed harmonic load, the steady-state 
vibration amplitudes for the Timoshenko beams 

) , , ,( 0
2

0
121 nnnn AAAA  can be determined. We accounted 

the results for three case of shear modulus of Pasternak 
layer 100000 ,1000 ,00 G . If we introduce 00 G  

in the whole equations of this paper we can obtain the 
vibration equations of the Timoshenko double-beam 
system on Winkler elastic layer that the results are verified 
by comparing with those available in Ref [9]. With the 
vibration mode number 3n  and the exciting frequency

nII6.0 , the effects Pasternak layer on the steady-

state vibration amplitudes 1nA  and 2nA  of the 

Timoshenko beam represented by the ratios 1  and 2 , 

shown in Figures-4 to 15, respectively. As can be seen, the 
ratio 1  decreases with the increase of the axial 

compression, which implies that the magnitude of the 
steady-state vibration amplitude 1nA  become smaller 

when the axial compression increases and the ratio 2  

increases with the increase of the axial compression, 
which implies that the magnitude of the steady-state 
vibration amplitude 2nA  become larger when the axial 

compression increases . It can be observed that the effect 
of compressive axial load on the magnitude of 1nA  is 

almost independent of the axial compression ratio   of 

the two beams whereas it is significantly dependent on the 
magnitude of 2nA  [9]. As we said before in this paper the 

effects of Pasternak layer on forced transverse vibration of 
a Timoshenko double-beam system with effect of 
compressive axial load is analyzed. 
 
 

 
 

Figure-4. Relationship between ratio 1  and dimensionless 

parameter s  for different axial compression ratio 

 , 00 G
.
 

 

 
 

Figure-5. Relationship between ratio 1  and 

dimensionless parameter s  for different axial 

compression ratio  , 10000 G
.
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Figure-6. Relationship between ratio 1  and parameter s  

for different axial compression ratio  , 1000000 G
.
 

 

 
 

Figure-7. Relationship between ratio 1  and parameter s  

for different shear modulus of Pasternak layer, 1.0 . 

 
 

 
 

Figure-8. Relationship between ratio 1  and parameter s  

for different shear modulus of Pasternak layer, 5.0 . 

 

 
 

Figure-9. Relationship between ratio 1  and parameter s  

for different shear modulus of Pasternak layer, 9.0 . 
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Figure-10. Relationship between ratio 2  and 

dimensionless parameter s  for different axial 

compression ratio  , 00 G
.
 

 

 
 

Figure-11. Relationship between ratio 2  and parameter 

s  for different axial compression ratio  , 10000 G
. 

 

 
 

Figure-12. Relationship between ratio 2  and parameter 

s  for different axial compression ratio  , 1000000 G .
 

 
 

Figure-13. Relationship between ratio 2  and parameter 

s  for different shear modulus of Pasternak layer, 1.0 . 
 

 
 

Figure-14. Relationship between ratio 2  and parameter 

s  for different shear modulus of Pasternak layer, 5.0 . 

 

 
 

Figure-15. Relationship between ratio 2  and parameter 

s  for different shear modulus of Pasternak layer, 9.0 . 
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Effects of Pasternak layer cannot be observed on 
Figures 4 to 15. Numerical values of the ratios 1  and 2  

for different shear modulus of Pasternak layer with 
different axial compression ratio  of the two beams is 

shown in Table-2. Numerical results of the ratios 1  and 

2  show that the difference with ratios 1  and 2  

decrease with increasing shear modulus of Pasternak layer 
for different axial compression ratio . But the 

differences among the results is too little and when we 
compare them with Rayleigh double beam, can be found 
that the effects of Pasternak layer on Rayleigh double 
beam is more than Timoshenko double beam. 

 
Table-2. Effects of shear modulus of Pasternak layer on the steady-state vibration amplitudes 

ratios 1  and 2  for different compressive axial ratio  . 
 

     s 
 

1 0.8 0.6 0.4 0.2 0 

 )1.0(1   

1.2041 1.1575 1.1142 1.0737 1.0358 1 )0( 0 G  

1.2041 1.1575 1.1142 1.0737 1.0358 1 )1000( 0 G  

1.2040 1.1573 1.1141 1.0737 1.0357 1 )100000( 0 G  

 )5.0(1   

1.2006 1.1557 1.1134 1.0735 1.0358 1 )0( 0 G  

1.2006 1.1557 1.1134 1.0735 1.0358 1 )1000( 0 G  

1.2005 1.1557 1.1134 1.0735 1.0358 1 )100000( 0 G  

 )9.0(1   

1.198 1.1543 1.1129 1.0734 1.0358 1 )0( 0 G  

1.198 1.1543 1.1129 1.0734 1.0358 1 )1000( 0 G  

1.198 1.1544 1.1129 1.0735 1.0357 1 )100000( 0 G  

 )1.0(2   

1.2247 1.1733 1.1256 1.0811 1.0393 1 )0( 0 G  

1.2246 1.1733 1.1256 1.0811 1.0393 1 )1000( 0 G  

1.2245 1.1732 1.1255 1.0810 1.0393 1 )100000( 0 G  

 )5.0(2   

1.3083 1.2379 1.1723 1.1111 1.0537 1 )0( 0 G  

1.3083 1.2379 1.1723 1.1111 1.0537 1 )1000( 0 G  

1.3082 1.2378 1.1722 1.1110 1.0537 1 )100000( 0 G  

 )9.0(2   

1.403 1.3091 1.2225 1.1425 1.0685 1 )0( 0 G  

1.403 1.3091 1.2225 1.1425 1.0685 1 )1000( 0 G  

1.4028 1.3090 1.2224 1.1424 1.0685 1 )100000( 0 G  
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On the other hand, with the axial compression 
ratio 5.0  and the exciting frequency nII6.0 , 

the effects of Pasternak layer on the steady-state vibration 
amplitudes 1nA  and 2nA  are shown in Figures-16 to 27 

for different mode shape number n , respectively. It can be 

seen that, with the same axial compression, the ratios 1  

and 2  diminish with the increasing vibration mode 

number n , which implies that the magnitudes of the 

steady-state vibration amplitudes 1nA  and 2nA  get 

smaller when the vibration mode number n  becomes 
larger [9]. 
 

 
 

Figure-16. Relationship between ratio 1  and 

dimensionless parameter s  for different mode 

number n  for 00 G
.
 

 

 
 

Figure-17. Relationship between ratio 1  and 

dimensionless parameter s  for different mode 

number n  for 10000 G
.
 

 

 
 

Figure-18. Relationship between ratio 1  and 

dimensionless parameter s  for different mode 

number n  for 1000000 G
.
 

 

 
 

Figure-19. Relationship between ratio 1  and parameter 

s  for different shear modulus of Pasternak layer, 3n . 

 

 
 

Figure-20. Relationship between ratio 1  and parameter 

s  for different shear modulus of Pasternak layer, 5n . 
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Figure-21. Relationship between ratio 1  and parameter 

s  for different shear modulus of Pasternak layer, 7n . 

 

 
 

Figure-22. Relationship between ratio 2  and 

dimensionless parameter s  for different mode 

number n  for 00 G
.
 

 

 
 

Figure-23. Relationship between ratio 2  and 

dimensionless parameter s  for different mode 

number n  for 10000 G
.
 

 
 

Figure-24. Relationship between ratio 2  and 

dimensionless parameter s  for different mode 

number n  for 1000000 G
.
 

 

 
 

Figure-25. Relationship between ratio 2  and parameter 

s  for different shear modulus of Pasternak layer, 3n . 

 

 
 

Figure-26. Relationship between ratio 2  and parameter 

s  for different shear modulus of Pasternak layer, 5n . 
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Figure-27. Relationship between ratio 2  and parameter s  for different shear 

modulus of Pasternak layer, 7n . 

 
Table-3 shows the effects of compressive axial 

load and shear modulus of Pasternak layer on difference 

between the steady-state vibration amplitudes ratios 1  

and 2  of the Rayleigh beam for different mode number 

n . It can be observed that the differences between ratios 

1  and 2  of the Timoshenko beam increase with 

increasing the dimensionless parameter s . Also we can 

see that the ratios 1  and 2  decrease with increasing of 

the shear modulus of Pasternak layer for different mode 
shape numbers. 
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Table-3. Effects of shear modulus of Pasternak layer on the steady-state vibration 

amplitudes ratios 1  and 2  for different mode shape number n . 
 

     s 
 

1 0.8 0.6 0.4 0.2 0 

 )3(1 n  

1.2006 1.1557 1.1134 1.0735 1.0358 1 )0( 0 G  

1.2006 1.1557 1.1134 1.0735 1.0358 1 )1000( 0 G  

1.2005 1.1557 1.1134 1.0735 1.0358 1 )100000( 0 G  

 )5(1 n  

1.0692 1.0547 1.0406 1.0268 1.0133 1 )0( 0 G  

1.0691 1.0547 1.0406 1.0268 1.0133 1 )1000( 0 G  

1.0691 1.0547 1.0406 1.0268 1.0133 1 )100000( 0 G  

 )7(1 n  

1.0363 1.0289 1.0215 1.0143 1.0071 1 )0( 0 G  

1.0363 1.0289 1.0215 1.0143 1.0071 1 )1000( 0 G  

1.0363 1.0289 1.0215 1.0143 1.0071 1 )100000( 0 G  

 )3(2 n  

1.3038 1.2379 1.1723 1.1111 1.0537 1 )0( 0 G  

1.3038 1.2379 1.1723 1.1111 1.0537 1 )1000( 0 G  

1.3037 1.2378 1.1722 1.1110 1.0537 1 )100000( 0 G  

 )5(2 n  

1.1049 1.0828 1.0613 1.0404 1.0199 1 )0( 0 G  

1.1049 1.0828 1.0613 1.0404 1.0199 1 )1000( 0 G  

1.1048 1.0828 1.0613 1.0403 1.0199 1 )100000( 0 G  

 )7(2 n  

1.0548 1.0435 1.0324 1.0214 1.0107 1 )0( 0 G  

1.0548 1.0435 1.0324 1.0214 1.0107 1 )1000( 0 G  

1.0547 1.0435 1.0324 1.0214 1.0106 1 )100000( 0 G  

 
6. CONCLUSIONS 

Based on the Timoshenko beam theory, the 
effects of Pasternak layer on forced transverse vibration of 
an elastically connected simply supported Timoshenko 
double-beam, under compressive axial loading for one 
case of particular excitation loading are studied. The 
dynamic response of the system caused by arbitrarily 
distributed continuous loads is obtained. The magnitudes 

of the steady-state vibration amplitudes of the beam are 
dependent on the axial compression and shear modulus of 
Pasternak layer. The properties of the forced transverse 
vibrations of the system are found to be significantly 
dependent on the compressive axial load and shear 
modulus of Pasternak layer. The important result that this 
paper put emphasize on it is that the magnitudes of the 
steady-state vibration amplitudes become smaller when 
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the shear Pasternak modulus increases and Pasternak layer 
can reduces the magnitudes of the steady-state vibration 
amplitudes more than Winkler elastic layer. But base on 
Timoshenko theory which takes into account the effects of 
shear deformation and rotary inertia, Pasternak layer 
doesn’t have considerable effect on the magnitudes of the 
steady-state vibration amplitudes. Thus the Timoshenko 
beam-type dynamic absorber with Pasternak layer acts 
with a little more efficiency than Winkler elastic layer. 
Effects of Pasternak layer on Rayleigh double-beam is 
more than Timoshenko double-beam. Thus the 
Timoshenko beam-type dynamic absorber with Pasternak 
layer can be used to suppress the excessive vibrations of 
corresponding beam systems instead of those with Winkler 
elastic layer. Analytical forms found can be used in the 
optimal design of a new type of a dynamic vibration 
absorber. The beam-type dynamic damper is an accepted 
concept for a continuous dynamic vibration absorber 
(CDVA).  
 
Nomenclature 

Transverse displacements of 
the beams 

),( txww   

Global rotation of the cross-
section xw   

Unknown time function )(tTni  
Known mode shape function 
for simply supported single 
beam 

)(xX n  

Bending rotation ),( tx   

Unknown time function 
corresponding to the natural 
frequency ni . 

),( )( IIIitSni   

Eigen-function mX  

Amplitude of the load )(xq  
Exciting frequency of the load 
Steady-state vibration 
amplitudes of the two beams 
without axial compression 

0
2

0
1, nn AA  

Natural frequencies of the 
system n  

Shear modulus G  

Area of the beam cross- 
section A  

Shear factor k  

Bending moments M  
Young modulus E  
Second moment of the area of 
the cross-section I  

Mass density   

Spring constant K
Shear modulus of Pasternak 
layer 0G  
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