
 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6719

MANAGEMENT AND ANALYTIC OF SOCIAL NETWORK
APPLICATION WITH MOBILE BASED MEMORY

DATABASE AND DYNAMIC QUERYING

G. Dheepa and V. Vijayakaveri
Department of Information Technology, Sathyabama University, Sholinganallur, Chennai, Tamilnadu, India

E-Mail: dheepag.1986@gmail.com

ABSTRACT

Social network applications are flattering progressively more familiar on mobile network. A mobile presence
application is an imperative constituent of a social network application because it manages each mobile user’s occurrence
information, such as the current standing (online/offline), GPS locality and network address, and also updates the user’s
network friends with the information frequently. If updates occur habitually, the enormous number of messages distributed
by servers may lead to a scalability problem in a large-scale mobile presence service. By avoiding the problem, we put
forward efficient and scalable server structural design, called PresenceCloud; this enables mobile presence services to
support large-scale social network applications. When a mobile user comes under a network, Presence Cloud searches for
the presence of his/her friends and notifies them of his/her advent. Presence Cloud organizes quorum-based server-to-
server architecture to improve searching performance. A directed search algorithm and a one-hop caching strategy to
accomplish small constant search latency. We are going to analyze the performance of Presence Cloud in terms of the
search cost and search satisfaction level. The search cost is depending on the total number of messages leaved by the
presence server when a user arrives; and search satisfaction level is depending on the time takes to search for the arriving
user’s friend list. The results of simulations exhibit that Presence Cloud achieves performance gains in the search cost
without compromising search satisfaction.

Keywords: mobile presence services, social networks, distributed presence servers, cloud computing.

1. INTRODUCTION

Mobile devices and cloud computing
environments can provide presence-enabled applications.
Face book [1], Twitter [2], Foursquare [3], Google
Latitude [4], buddy cloud [5] and Mobile Instant
Messaging (MIM) [6], are the examples of Presence-
enabled applications. Social network services are changing
in which participants engage with their friends on the
network. They make use of the information about the
status of participants includes appearances and actions to
interrelate with their friends. In addition, to the wide
accessibility of mobile devices (e.g., Smartphone’s) that
utilizes wireless mobile network technologies, social
network services facilitate participants to share live
experiences instantly across the network. For example,
Face book receives more than 25 billion shared items
every month and Twitter receives more than 55 million
tweets each day. Hence, the social network services will
be the next trend of mobile Internet applications mobile
presence service is an crucial constituent of social network
services in cloud computing environments. A mobile
presence service is to maintain an up-to-date list of
occurrence information of all mobile users. It includes
details about a mobile user’s position, accessibility,
motion, device potential, and preferences. The service also
binds the users ID to his/her current information, as well
as recovers and donates to changes in the presence
information of the user’s close members. In social network
air force, each mobile user has a friend list, called a buddy

list, which contains the contact information of other users
of friends list. The mobile user’s status is transmitting
automatically to each friend on the buddy list. For
example, a mobile user logs into a social network
application, the mobile presence service searches each and
everyone on the user’s buddy list. To maximize a search
speed and minimize the announcement time, nearly all
presence services utilize server cluster technology [7]. The
number of mobile presence service users will increase
considerably in the near future.

The scalable mobile presence service is necessary
for the prospect Internet applications. Many Internet
services have been deployed in disseminated paradigms in
addition to cloud computing applications. For example, the
services implemented by Google and Face book are
broaden among as many distributed servers as achievable
to sustain the enormous number of users worldwide. We
travel around the affiliation between distributed presence
servers (PS) and server network topologies on the Internet,
and also propose a well-organized and scalable server-to-
server superimpose architecture called Presence Cloud to
improve the efficiency of mobile presence services for
large-scale social network services. First, observe the
server architectures of existing presence services. The
buddy-list search problem in scattered presence
architectures in large-scale geographically data centers.
When a distributed presence service is congested with
buddy search messages means buddy list search problem
arises. A scalable server-to-server architecture is used as

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6720

n

n

an element for mobile presence services. To avoid single
point of malfunction, PresenceCloud organizes presence
servers into a quorum-based server-to-server architecture
to smooth the progress of proficient buddy list searching.
Directed buddy search algorithm to attain small steady
search latency; and employs an active caching strategy
that considerably reduces the number of messages
generated by each search for a list of buddies. Recital
complication of Presence Cloud and two other
architectures, like a Distributed Hash Table (DHT)-based
scheme and a Mesh- based scheme are going too analyzed.
The results make obvious that Presence- Cloud achieves
foremost performance gains in terms of reducing the
number of messages without sacrificing search
satisfaction. The donation of this paper through our
mathematical calculation, the scalability trouble under the
distributed server architectures of mobile presence
services is calculated. Finally, we analyze the recital
complication of Presence Cloud and different designs of
distributed architectures.

2. THE PROBLEM STATEMENT

Problem statement is the system model and
buddy- list search problem. Geographically distributed
presence servers is used to form a server-to-server overlay
network, G = (V, E), where V is the set of the Presence
Server nodes, and E is a collection of controlled pairs of
V. Each PS node ni € V represents a Presence Server and
an element of E is a pair (ni, nj) € E with ni, nj € V.
Because the pair is ordered, (nj, ni) € E is not equivalent
to (ni, nj) € E. So, the edge (ni; nj) is called an outgoing
edge of ni, and an incoming edge of nj. The server
superimposes enables PS nodes to communicate with one
another by forwarding messages through other PS nodes in
the server overlay. A set of the mobile users in a presence
service as U={u1 ,... ; ui , .. . ; um }, where 1<=i<=m and
m is the number of mobile users. A mobile user ui mingle
with one PS node for search other user’s presence
information and to notify the other mobile users of his/her
arrival. When a mobile user ui changes his/her presence
standing, the mobile presence service searches presence
information of mobile users in buddy list Bi of ui and
notifies each of them of the presence of ui and also notifies
ui of these online associates. The Buddy-List Search
Problem is then defined as designing server architecture of
mobile presence service such that the costs of searching
and notification in communication.

3. ANALYSIS AN ARCHITECTURE FOR
 MOBILE PRESENCE SERVICE

In a naive architecture of mobile presence
services predictable rate of messages generated to search
for buddies of newly arrived user. Each mobile user can
link and disappear the presence service randomly, and
each PS node only knows those mobile users directly
attached to it. We also assume the prospect for a mobile
user to attach to a PS node to be uniform. Let’s denote the

average inward rate of mobile users in a mobile presence
service. Here we have to tell about architecture of mobile
presence services and the problem of designing presence
servers. Each PS node has infinite service capacity. Hence,

 is the average rate of mobile users attaching node,
the n is distinguished the number of PS nodes in a mobile
presence examination. Where h denote the prospect of
having all users in the buddy list of ui to be attaching to
the same PS node as ui.

Thus,

The anticipated number of hunt m e s s a g e s
generated by PS node in unit time then

Reasonable size of set Bi an
consider the expected number Q of messages
generated by the n PS nodes per piece time, we have

The number of PS nodes increase, both the total
communication and total CPU processing overhead also
increase. Increases substantially, a major rear-ender on the
system transparency. However, a scalable presence system
should be able to support more than 20, 000 mobile user
logins per second. In the following Figure we plot
statistics for all expected queries transmitted in a mobile
presence service to show the increase in number of buddy
search messages as lambda increases. The figure shows
1,000 PS nodes, then the average arrival rate of mobile
user’s increases from 2, 000 to 21,000. From the results of
study, the quantity of buddy searching messages increases
with increasing average arrival rate of mobile users. This
plot most important for to design scalable server
architecture.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6721

ð
ffiffiffi e d e dð

ffiffiffi

Figure-1.

3. DESIGNOF RESENCECLOUD

 The previous algorithms are used to find
the fixed object searching problem in distributed systems
for astonish back-up. Mobile environment in social
network is complementary undependable. Mobile presence
services is to address the buddy-list investigate
predicament, in exacting the instruct of mobile social
network applications. This is worn to generate and
maintain distributed server architecture and used to
proficiently query the system for buddy list searches.
Presence Cloud having a three main mechanism and this
should run across a set of presence servers. By the intend
of Presence Cloud, we must follow the thoughts of P2P
systems and present a design for mobile presence services.
There are three chief mechanisms.

 PresenceCloud server overlay have a

presence servers based o n the idea o f grid
quorum system in a network. Server overl ay o f
Presence Cloud has a balanced load property
and a t w o -hop diameter with node
degrees.

 One-hop caching strategy is used to
decrease the number of transmitted messages
and pick up the rapidity query speed.

 Directed buddy search is depends on the directed
search algorithm. It could depend on a one-
hop search; it gives a product of small constant
search latency on average.

3.1. Overview of presence cloud

PresenceCloud is used to erect scalable server
architecture for mobile presence services, also the
services used to proficiently search the most wanted
buddy lists. The list manages an unrefined suggestion
of Presence Cloud in following Figure make by using
network.

The mobile network, and provide a data
connection to Presence Cloud via 3G or Wi-Fi services.
Mobile user joins a cloud network and authenticates
himself/herself to the mobile presence service in social
network, the determinately directed to one of Presence
Servers in the Presence Cloud by using the Secure Hash
Algorithm (SHA). Network Person of mobile can opens a
TCP connection to the Presence Server (PS node) for
control meaning distribution, principally for the happening
in advancement. The control waterway is conformist,
demand of mobile user to associated PS node for his/her
buddy list. This Cloud do well-organized searching
operation and return the presence information of the
desired buddies to the mobile we are departing to explain
three components of Presence- Cloud.

Figure-2. An overview of Presence cloud.

3.2. PresenceCloud server overlay

The PresenceCloud server overlay construction
organizes the PS nodes into server-to-server approaches.
The low-diameter chattels make sure that a PS node
needs to reach any node of presence server in social
network. Node of PS can only maintains a set of PS
nodes of size , the number of PS nodes
denotes n in mobile armed forces. Nodes join a apparent
demonstration PS record, Using a grid quorum system,

The extent of a grid quorum is In this
grid quaram presence server node with a grid ID can
pick one column and one row of entries and these
entries will become its PS list in a Presence Cloud
server overlay chattels. Presence cloud node can have
details of PS list can be equation . Presence cloud
with grid quaram can have a result of each PS node have
to reach any PS node almost two hops.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6722

Figure-3. A perspective of PrenceCloud server overlay.

3.2.1 Presence cloud stabilization algorithm

Presence cloud algorithm is fault tolerance
intend. Presence server node can have Stabilization
development periodically contacts existing PS nodes to
sustain the list of presence server. When a new PS node
joins, it can be added to PS list by contacting a root. Node
of n detects failed PS nodes starting PS list of network.

Algorithm
Presence cloud stabilization algorithm.

3.3 One-hop caching
To develop the effectiveness of the investigate

operation; PresenceCloud desires a caching stratagem to
duplicate presence message of users from the network.
The people of Presence network can be updated by the
expensive mechanism for scattered agreement of users.
Server of presence node having a user list of presence
information of the attached users. PS nodes duplicate the
user list at most one hop missing preliminary itself. It
invent an association the cache is updated. Presence server
node receives a query, it can respond to all of its
neighbors. When a mobile user changes its presence in
sequence, PS nodes for being paid reorganized promptly.
The one-hop caching stratagem ensures that the user’s
presence information could remain mostly up-to- date and
consistent throughout the session time of the user.

3.4 Directed buddy search

Buddy search algorithm is to improve a searching
performance in the presence cloud of managing. Searching
of buddy information can minimize probing reaction time
in the mobile presence services of social application.
Presence Cloud searching algorithm is attached with the
two-hop overlay and one-hop caching strategy ensures that
PresenceCloud can typically provide swift responses for a
large number of users.

Directed buddy search algorithm:

Figure-4. An example of buddy list searching

operations in PresenceCloud.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6723

p d
ffiffiffi

d
ffiffiffi

4. COST ANALYSIS
The user has to endow with cost psychoanalysis

of the communication cost of Presence Cloud and number
of messages requisite to search the buddy information. The
buddy-list search problem can be solved by a brute-force
search algorithm, and this algorithm simply searches all
the PS nodes in the mobile presence service in internet.
Mesh-based design denotes that the algorithm replicates
all the presence information at each PS node. The search
cost can be denote by QMesh. On the other hand, the
system needs n-1 messages to replicate a user’s presence
information to all PS nodes. The communiqué cost of
searching buddies and replicating presence information
can be formulated as Mcost = QM mesh + Rmesh, where
RM esh is the communication cost of replicating presence
information to all nodes of presence server. We have
Mcost = O(n). Cost of searching Presence Cloud is
denoted as QP, which is denoted as
messages for both searching buddy lists and replicating
presence information.

Figure-5. Average searching messages versus very

large number of PS nodes.

The replication of presence cloud can be denoted
as . Presence Cloud of a
PS node is to search a buddy list and replicates presence
information. The buddy list is located on different PS
nodes of a presence cloud environment. When all mobile
users are distributing equally among the PS nodes and this
should be worst case

The search cost of the DHT-based presence
architecture is very highly expensive. We make the
following assumptions to simplify the analysis: 1) the
presence information of a mobile user is only stored in one
PS node (i.e., no replication). Note that in some DHT, data
replicating increase both the node workload and the
maintenance complexity of networking. 2) All mobile
users are uniformly distributed in all PS nodes. Our
analysis is based on the chord. This note has to maintain
the login neighbors in the presence cloud. The buddy list
has the information about the presence friends list. The
data present in the buddy list can be search one by one.

The total search complexity of DHT is equal to

.

5. PERFORMANCE EVALUATION

 The accomplishment of network
simulator and the related architectures like Mesh- based
PresenceCloud and Chord-based presence server
architecture. Packet-level simulator allows performing
tests up to 20, 000 users and 2,048 PS nodes. We relate
two physical topologies to simulate Internet networks.

a) King-topology: It should be a real Internet topology

From the King data set. Delay matrix of king data set
is derived from Internet measurements using
techniques.

b) Brite-topology: AS topology generated the BRITE
topology generator [36] using the Waxman model
where alpha and Beta. In addition, HS (size of one side
of the plane) is set to 1,000 and LS (size of one side of
a high-level square) is set to 100. The Brite-topology
having 1, 000 nodes.

 The computer-generated topology spaces every
PS node at position on the King-topology or the Brite-
topology, selected consistently at arbitrary. Simulations
involve networks of less than 2, 048 PS nodes, we use a
pair wise latency matrix derived from measuring the inter-
PS node latencies. The average delay 77.4 milliseconds of
King-topology and ninety six. Two milliseconds in the
Brite- topology. The number of users is set to be 20, 000.

6. SIMULATION RESULTS

The user has to first weigh up and compare the
three server architectures by taking into account the total
buddy searching messages metric. Instantiated a server
network of 256 PS nodes in our simulator, then a number
of experiments to investigate the effect of scalability of PS
nodes on involved searching messages. More specifically,
we varied the user arrival rate is 100 to 8, 000 per second
to explore the relation between user arrival rate and the
total searching messages. The number of buddies is set to
100. Figure-6 depicts the total number of searching
message transmissions during simulation time (1, 800
seconds) under various user arrivals rare.

The following figure shows that the total number
of messages increases as per the arrival increases.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6724

Figure-6. The total message transmissions during

simulation time (1,800 s). (The x-axis of this figure
is in logarithmic scale).

7. CONCLUTIONS

In this paper, we have represented Presence
Cloud, architecture of scalable server that supports mobile
presence services in large-scale social network services.
PesenceCloud have low search latency and improve the
performance of mobile presence services. We discussed in
server architecture how the scalable problem arises and
introduced the buddy-list search problem, this will be a
scalability problem in the distributed server architecture of
mobile presence services. In a simple mathematical model,
the total number of buddy search messages increases
significantly with the user arrival rate and the number of
presence servers. Presence Cloud achieves most important
performance gains in terms of the search cost and search
satisfaction. In general, Presence Cloud is shown to be a
scalable mobile presence service in large- scale social
network services.

REFERENCES

[1] R.B. Jennings, E . M . Nahum, D.P. Olshefski, D.

Saha, Z.-Y. Shae and C. Waters. 2012. A Study of
Internet Instant Messaging and Chat Protocols.
IEEE Network. 20(6): 16-21, July/August. 2006.
Guides/p2pexplained.

[2] Z. Xiao, L. Guo and J. Tracey. 2007.
Understanding Instant Messaging Traffic
C h a r a c t e r i s t i c s . Proc. IEEE 27th In t ’ l
C on f . Distributed Computing Systems (ICDCS).

[3] C. Chi, R. Hao, D. Wang, and Z .-Z. Cao. 2008.
IMS Presence Server: Traffic Analysis and
Performance Modeling. P roc. IEEE Int’l Conf.
Network Protocols (ICNP).

[4] 2012. Instant Messaging and Presence Protocol
IETF Working Group, rter.html.

[5] K.P. Gummadi, S. Saroiu a n d S . D . Gribble.
2002. King: Estimating Latency between Arbitrary
Internet End Hosts. Proc. Second ACM SIGCOMM
Workshop Internet measurement (IMW).

[6] A. Medina, A. Lakhina, I. Matta and J. Byers.
2001. BRITE: An Approach to Universal
Topology Generation. Proc. ACM Ninth Int’l
Symp. Modeling, Analysis and Simulation of
Computer and Telecomm. Systems (MASCOTS).

[7] R. Cox, A. Muthitacharoen, and R.T. Morris. 2002.
Serving DNS Using a Peer-to-Peer Lookup
Service. Proc. First Int’l Workshop Peer-to- Peer
Systems (IPTPS).

[8] V. Ramasubramanian and E.G. Sirer. 2004.
Beehive: 0(1) Lookup Performance for Power-
Law Query Distributions in Peer-to-Peer
Overlays. Proc. USENIX First Conf. Symp.
Networked Systems Design and Implementation
(NSDI).

[9] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek and
H. Balakrishnan. 2003. Chord: A Scalable P e e r -
to-Peer Lookup Service for Internet. IEEE/ACM
Tran. Networking. 11(1): 17-32.

[10] X. Chen, S. Ren, H. Wang and X. Zhang. 2005.
SCOPE: Scalable Consistency Maintenance in
Structured P2P Systems. Proc. IEEE INFOCOM.

