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ABSTRACT 

The paper aims at carrying out the mathematical modeling and the performance analysis of a parallel computer 
system. Research methods are based on using the theory of analytical, numerical and simulation modeling, the theory of 
systems and queuing networks, the probability theory and the stochastic process theory. The authors deal with the 
analytical models of Task Managers for parallel processing systems based on the open-loop queuing systems. They 
investigate the methods of studying first-in-first-out Task Managers. The analytical models based on stochastic queuing 
networks for obtaining the managers’ probabilistic and temporal characteristics are presented in the article. The results of 
the work done are equations for calculating the mean residence time of the problem in each system under study. The 
analytical calculations have been verified for their adequacy by simulation modeling. The experimental results have been 
displayed on the graph. During the problem investigation the appropriate conclusions have been made for each system type 
presented in the article. The considered models of Managers can be used in general purpose systems (for example in 
operating systems). 
 
Keywords: mathematical modelling, processes planning, task manager, stochastic network, queuing system, operating system, service 
discipline. 

 
1. INTRODUCTION 

The design of new multiprocessor operating 
systems is a rather acute problem of decreasing overheads 
arising during planning processes. The function of task 
dispatching being chosen for the processing by CPUs is a 
part of a scheduler of an operating system [5]. The least 
expensive way to solve the problem is to carry out 
mathematical modeling of various characteristics of Task 
Manager. There are several different ways of constructing 
Task Managers in parallel processing systems (particular 
in multiprocessor systems). There are two main ones: with 
time-sharing (general queue of processes ready for 
processing) and with separation in space (individual queue 
of processes to service facilities (CPUs)) [2, 5, 8, 9]. The 
article discusses in details Managers with general tasks 
queue shared by all the processors. We assume that a 
kernel function of the operating system, including Task 
Manager, is implemented on a dedicated (control) 
processor. 

We know quite a number of dispatching 
disciplines, that is, rules of forming a queue of runnable 
tasks, in accordance with which this queue is formed. 
Sometimes they are referred to as service disciplines, 
omitting the fact that the distribution of quanta of CPU 
time is talked about. Some dispatching disciplines show 
the best results for a particular service strategy, while for 
the strategy of another type they can be completely 
unacceptable. The discipline FIFO will be considered in 
the paper, which still finds its application because of its 
simplicity and ability to balance dynamically the 
processors usage [5]. 

2. GOAL SETTING 
Consider the Managers with a shared queue, 

described in [2, 8, 9] details based on the models in the 
form of open-loop stochastic queuing systems (Figure-1). 
In the model the task coming from outside (from the 
source S0 with the intensity λ0) or after a context switch 
can be set in any CPU. In this article tasks setting 
according to a CPU is selected with equal probability to 
assess approximately the situation of mathematical 
modeling (analytical and simulation) of a real process, to 
avoid a system usage, when all tasks try to get a room in 
one or more of the CPUs, and some CPUs are idle. A 
queue is formed with a limited number of places (queue 
failures), so when it becomes full, a part of requests will be 
denied in service that corresponds to the actual mode of 
operation of a computer system, when a downloaded 
application remains on the hard disk until the tasks queue 
ready to service is busy in the processor node [1, 7]. The 
intensity of the tasks flow in this case will be equal to 

1 0 2    . The processor node of the network is 

represented as a multichannel queuing network of a 
M/M/n/m (S1) type, with the number of service facilities 
(n) and the limitation of the queue length (m). The CPUs 
form the flow of requests to the Manager, and if it is busy, 
a requesting processor enters a standby mode. In this case, 
a queue of pending processors is formed, which does not 
exceed the number of these facilities [1, 15, 19]. The 
intensity of the tasks flow coming from the queue O2 will 

be equal to 2 1 0    . One task can be on Manager 

Service, and (n-1) tasks will wait in the queue in front of it. 
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The model of the access mechanism to this resource is 
represented as a single-channel queuing system (S2). 
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Figure-1. The diagram of the analytical model of n-
processor system with a shared Task Manager. 

 
There are two broad classes of service disciplines: 

priority and non-priority disciplines. The former means 
that a tasks selection from the queue happens to be in a 
predefined order without taking into account their relative 
importance and the time of operation (for example, FIFO 
and LIFO). The latter means that some tasks are provided 
with the prior right to enter the state of execution. The 
article deals with FIFO systems.  

Let us consider the queues in queuing networks 
for this system. 
 
3. THE CALCULATION OF CHARACTERISTICS  
    OF QUEUING NETWORK 

Consider Task Manager with the discipline FIFO 
(first in first out - «first come, first served») according to 
which tasks are served “first in first out” that is in the order 
of their appearance. Task Manager queues tasks which are 
not executed during the time given by the processor 
(quantum) again in front of the CPU for further processing. 
This approach allows you to implement the strategy of the 
service «if it is possible to finish calculations in order of 
their appearance». This discipline requires no external 
intervention during calculations; there is no redistribution 
of CPU time. We can say that it refers to nonpreemptive 
disciplines. The advantages are as follows.  It is easy to   
implement and low system resources are used to form a 
tasks queue. However, this discipline leads to the fact that 
an increase of the computing system usage results in the 
growth of the average response time for the service, and  
short tasks (requiring small amount of computer time) 
have to wait as long as time-consuming  ones [5, 16, 18]. 
The queue of tasks ready for processing in queuing 
systems S1 is a queue with response and length limitations. 
The task coming at time when the channel is busy is 
queued and it waits for its service. Assume that no matter 
how many problems come to the input of the serving 
queuing system, it cannot accommodate more than m-

tasks, one of which is being serviced and (m-1) are in 
standby mode. Tasks that are not included are served 
anywhere else, it means they are lost. 

1
1

1

  – is the intensity of a stream, which represents 

the average number of tasks coming to queuing system S1 
during the service time of one task. Equations for the final 
probabilities can be found using the formulae obtained in 
[2]: 

12 1
1 1 1 1 1

0
1

(1 ( / ) )
1 ...

1! 2! ! ! (1 / )

n n mn
P

n n n n

    


  
         

where n - the number of service facilities (processors), m – 
the number of places in the queue. 

The formation of a queue takes place when at the 
moment of the next task coming to the queuing system S1 
all n processors are busy, that is if there will be either n, or 
n +1, ..., or (n + m-1) requests in the system. Since these 
events are inconsistent, then the probability of the queue 
formation роч is the sum of the corresponding probabilities 
pn, pn +1, ..., pn + m-1 [1, 3, 6, 7]: 
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A denial of the service occurs when all m places 

are occupied: 
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Let’s put down the average number of tasks in the 
service queue in the following equation [10]: 
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The model of Task Manager seems to be a single-
channel, closed queuing system (S2) with a limited number 
of sources of service requests. The considered system is 
similar to the «task about machine-tools» [4]. A CPU 
generated the request is suspended if at the time of the 
request Manager is busy. In this model this state is 
modeled by the queue of processors O2 for Manager. If 
Task Manager is free, it starts serving the request, which 
may take the average time required for the context switch 
 .  

Queuing system S2 has a number of states, which 
we enumerate according to the number of requests 
occupied by CPU generation: 

S0 - all CPUs are capable of generating Task 
Manager requests, Task Manager is free; 

S1 - one CPU is suspended, Task Manager is 
busy servicing a request); 

S2 - two CPUs are suspended (Task Manager is 
busy servicing a request, one request is in the queue); 
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Sn - n CPUs are suspended, Task Manager is 
busy servicing a request, (n-1) requests are in the queue. 

Next, we present an equation to determine the 
probability of requests absence to queuing network S2 [4, 
11]: 

0 2
2 2 2 2 2 2

1

1 ( / ) ( 1)( / ) ... ( 1)...1 ( / )nn n n n n

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For example   – the average number of CPUs 

being busy with stream service coming from the ready 
tasks queue. 

These CPUs are a source of the requests to Task 

Manager, which intensity is 2 . At the entrance of 

queuing system S2 requests are generated with the average 

intensity 2  ; all these requests are served in Task 

Manager, therefore, 2 0 2(1 ) ,        whence 

2
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Now we define the average number of CPUs 
waiting for Task Manager service. The number of serving 
CPUs (  ) is the sum of the number of tasks (l2) queuing 

to Task Manager  service, and the number of tasks (r2) 
directly being serviced is  = l2+ r2. The number of  tasks 

being included in service is equal to one if Task Manager  
is busy, and zero if it is free, that is the average value of r2 
is the probability that Task Manager  is busy (r = 1 – π0). If 
we subtract this value from the value of the average 
number of CPUs engaged in service, we’ll get the average 
number of tasks waiting for service [4, 13]: 
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Now let's consider the intensity of tasks streams 
in queuing networks including the queuing systems S1 and 
S2. They can be represented by the following system of 
equations: 
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The intensities 1  and 2  will depend on the 

incoming intensity of tasks of the source S0 and the 

transition probabilities from S1 to S2 (P12) and from S1 to 
S0 (P10). Since there are denials of service in the queuing 
system S2, the intensities of flows 1  and 2 will decline: 
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The average delay time (latency) of a task in 
queues is determined by the formulae 
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Determine the transmission ratio [2] showing how 
many times the task will go through this queuing system, 
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Since each task can get the service in the i-th 

queuing system in the mean i  times, the queuing time 

for service and time of its residence in the system will 

increase in i  times [14]. Here is the average queuing 

time of tasks in network queues 1 1 2 2W w w    
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The residence time of tasks in the system with 
Task Manager and tasks general queue  
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General queue with processor relative priorities and 
manager relative priorities 

Priorities are referred to as relative ones in case if 
they are taken into account at the moment of task selection 
for serving and if they don’t influence the system 
operation at the moment of task serving of any priority. 
After the completion of serving of any task from the 
queue, a task with a high priority is taken for serving. If 
during the process of its serving some other tasks with a 
higher priority come, the serving process of the current 
task won’t be interrupted. This task remains with the 
highest priority up to the end of the serving process. With 
the introduction of relative priorities to the manager queue 
the response time of top-priority tasks is noticeably 
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shortened. They don’t stand in queues as in case of above 
mentioned disciplines without serving priority. 

The equation for average response time in the n-
channel system is given below:  
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where n - the number of channels in the system; k - the 
number of tasks priorities types; Г - the gamma function; Т 
- the distribution moment. 

The equation for average response time in one-
channel system (M/G/1 type) is given below [1]: 
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where i  – the  intensity of a coming stream of tasks of 

priority; ib – the average value at the distribution  

according to the arbitrary law  B (τ) of serving period b ; 

ib – coefficient of variation; 1kR   and kR  – total usage 

made by tasks with the priority not less than (k-1) and k 
correspondingly:  
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On the basis of all mentioned above and formulae 

for response time in queues with relative priorities, let’s 
determine the average response time of tasks in the 
system: 
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General queue with processor relative priorities and 
manager absolute priorities  

Task Manager operating on the absolute priorities 
principal (processor is at the disposal of a top-priority task; 
if priorities are equal it operates on the order principal) is 
used in some OS of real time. 

In other words, the appearance of a higher priority 
task may be a reason for a task removal. So if it is necessary to 

arrange tasks serving in such a way that all of them accept 
processor time on a regular and peer basis then a system 
operator can arrange this discipline itself. It is enough for all 
users’ tasks to have similar priorities and formulate one top-
priority task which shouldn’t be active but however it will be 
planned for serving by a timer (in specified periods of time). 
Thanks to high priority of this task the current application 
will be removed from serving and will be placed to the end 
of the queue. Since this task is not active then the 
processor becomes free and the next task from the queue 
will be taken. The priority is absolute if it interrupts low 
priority task serving. The interrupted task either can be lost 
or placed back to the queue for further serving which can 
be of two variants: serving from the very start, further 
serving (task serving proceeds from the interrupted 
moment). In this article we mean further serving of the 
interrupted task. 

On the basis of [1] the task average response time 
for k-class:  
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where Rk-1 и Rk – total tasks usage having the priority not 
less than (k-1) and k correspondingly and determined 
according to the formulae (2). 

Total average response time of k-class tasks for 
the described system will be determined by the following 
equation: 
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AN EXAMPLE AND SIMULATION RESULTS 

The analytical modeling results obtained are verified 
and proven by simulation modeling which provides the 
evidence of the adequacy of the developed methods of carrying 
out Task Managers’ research with a general queue. During the 
control checks of relevance and adequacy of the model we use 

the following data: the intensity of input flow of tasks 0 = 0, 

03; 0, 06; 0, 09 tasks per microsecond (respectively low, 
medium and high usage of CPU). Time context switch by Task 
Manager is r = 9 microseconds, which corresponds to the 
average values of the context switch time of operating systems 
with slow feedback (for example in LinuxRT) [12]. The 
probability of treated tasks is P10= 0, 05. The probability of 
sending task for further processing is P12 = 0, 95. Processing 
time for one task by a processor is  =10 microseconds. The 
size of a general queue in front of CPUs is N=128 tasks. The 
Number of CPUs varies from 4 to 100. Here are the analytical 
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and simulation graphs obtained at medium, low and high CPUs 
usage 
 

 
 

Figure-2. The dependence of Task Manager usage on the 
number of processors. 

 

 
 

Figure-3. The dependence of the average latency of Task 
Manager release on the number of processors. 

 
The mathematical modeling results presented in 

the graphs showed that Task Manager with requested 
parameters under the worst usage circumstances can be 
used up to soft real-time systems, because latency does not 
exceed 13 microseconds. This latency corresponds to 
many existing real-time systems, for example, LinuxRT 
[12]. 

If the number of CPUs in the system doesn’t 
exceed 16 you can use Task Manager in hard real-time 
systems, as its latency is less than 3 microseconds. If the 
number of processors is more than 64, you should use 
more efficient Task Manager implemented, for example, in 
hardware. 
 
DISCUSSIONS 

In this paper, we have obtained formulae for the 
calculation of queuing time in queues (latency) of a 
processor node and manager, response time in the system 
as a whole. 

The adequacy of the analytical model of Task 
Managers with a general queue is confirmed by the data 
obtained in the course of simulation. Error does not exceed 

20%, which is quite acceptable for evaluating variants of 
the implementation of Task Managers at the initial 
development stage. 

This work has been funded by the scholarship of 
the President of the Russian Federation (SP-828.2015.5). 
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