
 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6744

MATHEMATICAL MODELING OF TASK MANAGERS FOR
MULTIPROCESSOR SYSTEMS ON THE BASIS OF

OPEN-LOOP QUEUING NETWORKS

Martyshkin A. I. and Yasarevskaya O. N.
Penza State Technological University, Baydukov Proyezd / Gagarin Street, 1a/11, Penza, Penza region, Russia

E-Mail: alexey314@yandex.ru

ABSTRACT

The paper aims at carrying out the mathematical modeling and the performance analysis of a parallel computer
system. Research methods are based on using the theory of analytical, numerical and simulation modeling, the theory of
systems and queuing networks, the probability theory and the stochastic process theory. The authors deal with the
analytical models of Task Managers for parallel processing systems based on the open-loop queuing systems. They
investigate the methods of studying first-in-first-out Task Managers. The analytical models based on stochastic queuing
networks for obtaining the managers’ probabilistic and temporal characteristics are presented in the article. The results of
the work done are equations for calculating the mean residence time of the problem in each system under study. The
analytical calculations have been verified for their adequacy by simulation modeling. The experimental results have been
displayed on the graph. During the problem investigation the appropriate conclusions have been made for each system type
presented in the article. The considered models of Managers can be used in general purpose systems (for example in
operating systems).

Keywords: mathematical modelling, processes planning, task manager, stochastic network, queuing system, operating system, service
discipline.

1. INTRODUCTION

The design of new multiprocessor operating
systems is a rather acute problem of decreasing overheads
arising during planning processes. The function of task
dispatching being chosen for the processing by CPUs is a
part of a scheduler of an operating system [5]. The least
expensive way to solve the problem is to carry out
mathematical modeling of various characteristics of Task
Manager. There are several different ways of constructing
Task Managers in parallel processing systems (particular
in multiprocessor systems). There are two main ones: with
time-sharing (general queue of processes ready for
processing) and with separation in space (individual queue
of processes to service facilities (CPUs)) [2, 5, 8, 9]. The
article discusses in details Managers with general tasks
queue shared by all the processors. We assume that a
kernel function of the operating system, including Task
Manager, is implemented on a dedicated (control)
processor.

We know quite a number of dispatching
disciplines, that is, rules of forming a queue of runnable
tasks, in accordance with which this queue is formed.
Sometimes they are referred to as service disciplines,
omitting the fact that the distribution of quanta of CPU
time is talked about. Some dispatching disciplines show
the best results for a particular service strategy, while for
the strategy of another type they can be completely
unacceptable. The discipline FIFO will be considered in
the paper, which still finds its application because of its
simplicity and ability to balance dynamically the
processors usage [5].

2. GOAL SETTING
Consider the Managers with a shared queue,

described in [2, 8, 9] details based on the models in the
form of open-loop stochastic queuing systems (Figure-1).
In the model the task coming from outside (from the
source S0 with the intensity λ0) or after a context switch
can be set in any CPU. In this article tasks setting
according to a CPU is selected with equal probability to
assess approximately the situation of mathematical
modeling (analytical and simulation) of a real process, to
avoid a system usage, when all tasks try to get a room in
one or more of the CPUs, and some CPUs are idle. A
queue is formed with a limited number of places (queue
failures), so when it becomes full, a part of requests will be
denied in service that corresponds to the actual mode of
operation of a computer system, when a downloaded
application remains on the hard disk until the tasks queue
ready to service is busy in the processor node [1, 7]. The
intensity of the tasks flow in this case will be equal to

1 0 2    . The processor node of the network is

represented as a multichannel queuing network of a
M/M/n/m (S1) type, with the number of service facilities
(n) and the limitation of the queue length (m). The CPUs
form the flow of requests to the Manager, and if it is busy,
a requesting processor enters a standby mode. In this case,
a queue of pending processors is formed, which does not
exceed the number of these facilities [1, 15, 19]. The
intensity of the tasks flow coming from the queue O2 will

be equal to 2 1 0    . One task can be on Manager

Service, and (n-1) tasks will wait in the queue in front of it.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6745

The model of the access mechanism to this resource is
represented as a single-channel queuing system (S2).

CPU1

CPUn

Task
Manager

...

S1

S2

O1

O2

0

v

v

τ





0
ω1

ω2

Figure-1. The diagram of the analytical model of n-
processor system with a shared Task Manager.

There are two broad classes of service disciplines:

priority and non-priority disciplines. The former means
that a tasks selection from the queue happens to be in a
predefined order without taking into account their relative
importance and the time of operation (for example, FIFO
and LIFO). The latter means that some tasks are provided
with the prior right to enter the state of execution. The
article deals with FIFO systems.

Let us consider the queues in queuing networks
for this system.

3. THE CALCULATION OF CHARACTERISTICS
 OF QUEUING NETWORK

Consider Task Manager with the discipline FIFO
(first in first out - «first come, first served») according to
which tasks are served “first in first out” that is in the order
of their appearance. Task Manager queues tasks which are
not executed during the time given by the processor
(quantum) again in front of the CPU for further processing.
This approach allows you to implement the strategy of the
service «if it is possible to finish calculations in order of
their appearance». This discipline requires no external
intervention during calculations; there is no redistribution
of CPU time. We can say that it refers to nonpreemptive
disciplines. The advantages are as follows. It is easy to
implement and low system resources are used to form a
tasks queue. However, this discipline leads to the fact that
an increase of the computing system usage results in the
growth of the average response time for the service, and
short tasks (requiring small amount of computer time)
have to wait as long as time-consuming ones [5, 16, 18].
The queue of tasks ready for processing in queuing
systems S1 is a queue with response and length limitations.
The task coming at time when the channel is busy is
queued and it waits for its service. Assume that no matter
how many problems come to the input of the serving
queuing system, it cannot accommodate more than m-

tasks, one of which is being serviced and (m-1) are in
standby mode. Tasks that are not included are served
anywhere else, it means they are lost.

1
1

1

  – is the intensity of a stream, which represents

the average number of tasks coming to queuing system S1
during the service time of one task. Equations for the final
probabilities can be found using the formulae obtained in
[2]:

12 1
1 1 1 1 1

0
1

(1 (/))
1 ...

1! 2! ! ! (1 /)

n n mn
P

n n n n

    


  
         

where n - the number of service facilities (processors), m –
the number of places in the queue.

The formation of a queue takes place when at the
moment of the next task coming to the queuing system S1
all n processors are busy, that is if there will be either n, or
n +1, ..., or (n + m-1) requests in the system. Since these
events are inconsistent, then the probability of the queue
formation роч is the sum of the corresponding probabilities
pn, pn +1, ..., pn + m-1 [1, 3, 6, 7]:

1
1 1

0
0 1

1 (/)
.

! 1 /

mm

оч n i
i

n
p p p

n n

 








   



A denial of the service occurs when all m places

are occupied:

1
0.

!

n m

otk n m m
p p p

n n

 

 

Let’s put down the average number of tasks in the
service queue in the following equation [10]:

1
1 1 1

1 02
1 1

(1 (/) (1 (1 /))
.

! (1 /)

n mm

n i
i

n m n
l i p p

n n n

  







     
   

  

The model of Task Manager seems to be a single-
channel, closed queuing system (S2) with a limited number
of sources of service requests. The considered system is
similar to the «task about machine-tools» [4]. A CPU
generated the request is suspended if at the time of the
request Manager is busy. In this model this state is
modeled by the queue of processors O2 for Manager. If
Task Manager is free, it starts serving the request, which
may take the average time required for the context switch
 .

Queuing system S2 has a number of states, which
we enumerate according to the number of requests
occupied by CPU generation:

S0 - all CPUs are capable of generating Task
Manager requests, Task Manager is free;

S1 - one CPU is suspended, Task Manager is
busy servicing a request);

S2 - two CPUs are suspended (Task Manager is
busy servicing a request, one request is in the queue);

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6746

Sn - n CPUs are suspended, Task Manager is
busy servicing a request, (n-1) requests are in the queue.

Next, we present an equation to determine the
probability of requests absence to queuing network S2 [4,
11]:

0 2
2 2 2 2 2 2

1

1 (/) (1)(/) ... (1)...1 (/)nn n n n n


     


      

For example  – the average number of CPUs

being busy with stream service coming from the ready
tasks queue.

These CPUs are a source of the requests to Task

Manager, which intensity is 2 . At the entrance of

queuing system S2 requests are generated with the average

intensity 2  ; all these requests are served in Task

Manager, therefore, 2 0 2(1) ,       whence

2
0

2

(1),
 


   or 0

2

1
.

p





Now we define the average number of CPUs
waiting for Task Manager service. The number of serving
CPUs () is the sum of the number of tasks (l2) queuing

to Task Manager service, and the number of tasks (r2)
directly being serviced is  = l2+ r2. The number of tasks

being included in service is equal to one if Task Manager
is busy, and zero if it is free, that is the average value of r2
is the probability that Task Manager is busy (r = 1 – π0). If
we subtract this value from the value of the average
number of CPUs engaged in service, we’ll get the average
number of tasks waiting for service [4, 13]:

0
2 0 0

2 2

1 1
(1) (1)(1)l

  
 


     

Now let's consider the intensity of tasks streams
in queuing networks including the queuing systems S1 and
S2. They can be represented by the following system of
equations:

0 00 0 10 1 20 2

1 01 0 11 1 21 2

2 02 0 12 1 22 2.

;

;

P P P

P P P

P P P

   
   
   

  
   
   

0 10 1

1 01 0 21 2

2 12 1

;

;

.

P

P P

P

 
  
 


  
 

0
1

10

0 12
2

10

;

.

P

P
P





 
  


The intensities 1 and 2 will depend on the

incoming intensity of tasks of the source S0 and the

transition probabilities from S1 to S2 (P12) and from S1 to
S0 (P10). Since there are denials of service in the queuing
system S2, the intensities of flows 1 and 2 will decline:

0
1

10

0 12
2

10

(1);

(1).

otk

otk

PP

P PP





   
    


The average delay time (latency) of a task in
queues is determined by the formulae

1
1

1

l
w


 , 2

2
2

L
w




Determine the transmission ratio [2] showing how
many times the task will go through this queuing system,

0

i
i




 , where i – the output intensity on the i-th

queuing system, 0 – intensity of the tasks source.

0
1

10 0

12 0
2

10 0

1
;

1
.

P

P

P







 


 

1
10

12
2

10

1
;

.

P

P

P









Since each task can get the service in the i-th

queuing system in the mean i times, the queuing time

for service and time of its residence in the system will

increase in i times [14]. Here is the average queuing

time of tasks in network queues 1 1 2 2W w w  

1 2 12 1 2 12

10 10 10

w w P w w P
W

P P P

  
  

The residence time of tasks in the system with
Task Manager and tasks general queue

1 1 2 2U u u     , 1 1 2 2; .u w u w    

1 12 2 1 12 2

10 10 10

() ()
.

w P w w P w
U

P P P

         
  

General queue with processor relative priorities and
manager relative priorities

Priorities are referred to as relative ones in case if
they are taken into account at the moment of task selection
for serving and if they don’t influence the system
operation at the moment of task serving of any priority.
After the completion of serving of any task from the
queue, a task with a high priority is taken for serving. If
during the process of its serving some other tasks with a
higher priority come, the serving process of the current
task won’t be interrupted. This task remains with the
highest priority up to the end of the serving process. With
the introduction of relative priorities to the manager queue
the response time of top-priority tasks is noticeably

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6747

shortened. They don’t stand in queues as in case of above
mentioned disciplines without serving priority.

The equation for average response time in the n-
channel system is given below:

 

1

1

1

1() (1)

1 1()

RP k

k

Tw Гn k

T Гn kk

   

  
,

where n - the number of channels in the system; k - the
number of tasks priorities types; Г - the gamma function; Т
- the distribution moment.

The equation for average response time in one-
channel system (M/G/1 type) is given below [1]:

2 2

1
2

1

(1)
,

2(1)(1)

i

H

i i b
RP i

k k

b
w

R R

 







 



where i – the intensity of a coming stream of tasks of

priority; ib – the average value at the distribution

according to the arbitrary law B (τ) of serving period b ;

ib – coefficient of variation; 1kR  and kR – total usage

made by tasks with the priority not less than (k-1) and k
correspondingly:

1

1
1

;
k

k i
i

R 






1

k

k i
i

R 


 

On the basis of all mentioned above and formulae

for response time in queues with relative priorities, let’s
determine the average response time of tasks in the
system:

 
2 2

1
1

1

(1)
1 1()

2(1)(1)

i

H

i i b
kRP i

k k

b
Tw Гn kk R R

 




             
 
 



General queue with processor relative priorities and
manager absolute priorities

Task Manager operating on the absolute priorities
principal (processor is at the disposal of a top-priority task;
if priorities are equal it operates on the order principal) is
used in some OS of real time.

In other words, the appearance of a higher priority
task may be a reason for a task removal. So if it is necessary to

arrange tasks serving in such a way that all of them accept
processor time on a regular and peer basis then a system
operator can arrange this discipline itself. It is enough for all
users’ tasks to have similar priorities and formulate one top-
priority task which shouldn’t be active but however it will be
planned for serving by a timer (in specified periods of time).
Thanks to high priority of this task the current application
will be removed from serving and will be placed to the end
of the queue. Since this task is not active then the
processor becomes free and the next task from the queue
will be taken. The priority is absolute if it interrupts low
priority task serving. The interrupted task either can be lost
or placed back to the queue for further serving which can
be of two variants: serving from the very start, further
serving (task serving proceeds from the interrupted
moment). In this article we mean further serving of the
interrupted task.

On the basis of [1] the task average response time
for k-class:

2

1 1

1 1

(1)

2(1)(1) 1

i

H

i i b
АП i k k
k

k k k

b
R b

w
R R R

 
 

 


 

  


, (k=1,…,H),

where Rk-1 и Rk – total tasks usage having the priority not
less than (k-1) and k correspondingly and determined
according to the formulae (2).

Total average response time of k-class tasks for
the described system will be determined by the following
equation:

 
2

1
1 1

1 1

(1)
1 1()

2(1)(1) 1

i

H

i i b
kОП АП i k k

k
k k k

b
R bTw Гn kk R R R

 
  

 

               
 
 



AN EXAMPLE AND SIMULATION RESULTS

The analytical modeling results obtained are verified
and proven by simulation modeling which provides the
evidence of the adequacy of the developed methods of carrying
out Task Managers’ research with a general queue. During the
control checks of relevance and adequacy of the model we use

the following data: the intensity of input flow of tasks 0 = 0,

03; 0, 06; 0, 09 tasks per microsecond (respectively low,
medium and high usage of CPU). Time context switch by Task
Manager is r = 9 microseconds, which corresponds to the
average values of the context switch time of operating systems
with slow feedback (for example in LinuxRT) [12]. The
probability of treated tasks is P10= 0, 05. The probability of
sending task for further processing is P12 = 0, 95. Processing
time for one task by a processor is  =10 microseconds. The
size of a general queue in front of CPUs is N=128 tasks. The
Number of CPUs varies from 4 to 100. Here are the analytical

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6748

and simulation graphs obtained at medium, low and high CPUs
usage

Figure-2. The dependence of Task Manager usage on the
number of processors.

Figure-3. The dependence of the average latency of Task
Manager release on the number of processors.

The mathematical modeling results presented in

the graphs showed that Task Manager with requested
parameters under the worst usage circumstances can be
used up to soft real-time systems, because latency does not
exceed 13 microseconds. This latency corresponds to
many existing real-time systems, for example, LinuxRT
[12].

If the number of CPUs in the system doesn’t
exceed 16 you can use Task Manager in hard real-time
systems, as its latency is less than 3 microseconds. If the
number of processors is more than 64, you should use
more efficient Task Manager implemented, for example, in
hardware.

DISCUSSIONS

In this paper, we have obtained formulae for the
calculation of queuing time in queues (latency) of a
processor node and manager, response time in the system
as a whole.

The adequacy of the analytical model of Task
Managers with a general queue is confirmed by the data
obtained in the course of simulation. Error does not exceed

20%, which is quite acceptable for evaluating variants of
the implementation of Task Managers at the initial
development stage.

This work has been funded by the scholarship of
the President of the Russian Federation (SP-828.2015.5).

REFERENCES

[1] Aliyev T.I. 2009. The Basics of Discrete System

Modeling. SPb.: SPbGU ITMO. p. 363.

[2] Biktashev R.A., Martyshkin A.I. 2012. Modeling Task
Managers of Multi-processor Systems // Advances of
Modern Natural Science: Scientific Theoretical
Journal. (6): 83-85.

[3] Bocharov P.P., Pechinkin A.V. 1995. The Queuing
Theory: Textbook. RUDN. p. 529.

[4] Ventcel E. E. 2012. Introduction to operations
research. M.: EE Media. p. 390.

[5] Gorgeyev A.V. 2004. Operating Systems. The 2nd
Edition. SPb.: Piter. p. 417.

[6] Kleinrock L. 1979. Computing with Queues. M.: Mir.
p. 600.

[7] Lozhkovskiy A.G. 2012. The Queuing Theory in
Telecommunications: Textbook. Odessa: ONAS
named after A.S. Popov. p. 112.

[8] Martyshkin A.I. 2012. Investigating Multi-processor
Task Managers on Queuing Models // 21st Century:
The Resumes of the Past and the Challenges of the
Present Plus: Scientific and Methodological Journal.
Penza: PGTA. (5): 139-146.

[9] Martyshkin A.I. 2013. The Mathematical Model of a
Common Queue Task Manager for Parallel Processing
Systems // Modern Methods and Means of Processing
Spatio-temporal Signals: Proceedings of Articles of
the 11th All-Russia Scientific and Technical
Conference. Penza: PDZ. pp. 87-91.

[10] Matalytskiy M.A., Tichonenko O.M., Koluzayeva Ye.V.
2011. The Queuing Systems and Networks: the Analysis
and Applications: The Monograph.
Grodno: GrGU. p. 816.

[11] Matveyev V.F., Ushakov V.G. Queuing Systems. M.:
MGU. p. 240.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6749

[12] Mixalev V. 2012. Performance Test Results QNX
Neutrino. // Modern Automation Technology:
Scientific and Technical Journal. (2): 82-88.

[13] Abramov Vyacheslav M. 2006. Stochastic Analysis
and Applications. 24(6): 1205-1221.

[14] Kobersy Iskandar, S., Ignatev Vladimir V., Finaev
Valery I and Denisova Galina V. 2014. Automatic
optimization of the route on the screen of the car
driver. ARPN Journal of Engineering and Applied
Sciences. 9(7): 1164-1169.

[15] Kempa Wojciech M. 2010. Stochastic Models. 26(3):
335-356.

[16] MacGregor Smith J., Kerbache Laoucine. 2012.
International Journal of Production Research. 50(2):
461-484.

[17] Masuyama Hiroyuki, Takine Tetsuya. 2003.
Stochastic Models. 19(3): 349-381.

[18] Finaev Valery, I., Beloglazov Denis A., Shapovalov
Igor O., Kosenko Evgeny Y.a and Kobersy Iskandar
S. 2015. Evolutionary algorithm for intelligent hybrid
system training. ARPN Journal of Engineering and
Applied Sciences. 10(6): 2386-2391.

[19] Nadarajah Saralees. 2008. Stochastic Analysis and
Applications. 26(3): 526-536.

