
 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6870

A TAXONOMY AND COMPARISON OF HADOOP DISTRIBUTED FILE
SYSTEM WITH CASSANDRA FILE SYSTEM

Kalpana Dwivedi and Sanjay Kumar Dubey

Department of Computer Science Engineering, Amity School of Engineering and Technology, Amity University Uttar
Pradesh, Noida, (U.P.), India
E-Mail: skdubey1@amity.edu

ABSTRACT

As we know data and information is exponentially increasing in current era therefore the technology like Hadoop,
Cassandra File System, HBase etc became the hot technology and preferred choice among the IT professionals and
business communities. Hadoop Distributed File System and Cassandra File System is rapidly growing and proving
themselves to be cutting edge technology in dealing with huge amount of structured and unstructured data. Both HDFS and
CFS are open source software which comes under umbrella of Apache. Both technologies have large customer base which
is exponentially growing and have certain pros and cons .Since both the file system are very popular and extensively been
used in the areas of handling big data hence it is worth to do a comparison between both the technologies and helping the
intended reader in selecting appropriate file system which efficiently meets the requirement of the customer. Paper covers
about HDFS and CFS and then provides the comparative analysis of features provided by both the file systems.

Keywords: hadoop, cassandra, database, file system.

INTRODUCTION

Hadoop is an open source Apache project
framework for big scale computation and data processing
of huge data sets [1, 2]. Hadoop is a framework of tools
consists of pig, chukwa, HBase, avro, hive, mapreduce,
pig, hdfs, and zookeeper [3]. HDFS and Mapreduce are the
storage and processing component of Hadoop. Both are the
core components of Hadoop. Hadoop distributed file
system is designed for processing, storing and analyzing
huge amount of structured, unstructured and semi
structured data. It provides fault tolerance, scalability,
availability and reliable fast access to the information [4].
MapReduce is a massively parallel, scalable, processing
framework [5]. The design of HDFS is not specific to one
single machine rather than file system that is being used
by Hadoop but it will be distributed into a number of
machines like slave machines. HDFS is based on Google
file system.

Apache Cassandra is an open source tuneably
consistent, highly available, fault tolerant, distributed, and
elastically scalable, decentralized, column oriented
database [7]. Cassandra uses amazon dynamo scheme for
data clustering and distribution and Big Table data model
and is also non relational system [8]. Cassandra benefits
are high availability, fully distributed, multiregional
replication support (bi-directional), scalability, and write
performance, simple to install and operate. The Cassandra
file system has a replication facility, master less and
decentralized [9]. Cassandra offers robust support for
clusters spanning multiple data centers with asynchronous
masterless replication allowing low latency operations for
all clients.

WORKING OF HADOOP DISTRIBUTED FILE
SYSTEM

Master/slave architecture is followed by HDFS.
Daemon services of HDFS are NameNode and DataNode.
NameNode is also known as the job tracker. It is the
master of the system and maintains and manages the
blocks which are present on the Datanode [10]. Data node
is also known as task tracker The File system namespaces
are managed by the master server that is the Namenode in
a HDFS cluster and also stored on data nodes keeping the
physical file metadata information [11]. There are
DataNodes that can be one per node in the cluster. File
breaks into one or more blocks and then stores in a set of
Data Nodes whenever user attempts to store very huge size
of file [12, 13]. NameNode stores the metadata
information and assist client to perform various operations.
Block replication, deletion and creation upon instruction
from the Namenode are performed by the data node [14].

WORKING OF CASSANDRA FILE SYSTEM

Inspite of using sharded design a peer-to-peer
distributed “ring” architecture is used by Cassandra file
system which is much easier to setup, elegant and maintain
[15]. Cassandra file system is modelled as two column
families along with Keyspace [16]. Two primary HDFS
services are represented by two column families [17]. The
Inode column family is replaced by HDFS NameNode
service and sblocks is replaced with DataNode service
[18]. NameNode which tracks each files block locations
and metadata and DataNode service stores the file blocks
[19]. A dynamic composite type comparator is used by the
‘inode’ column family which contains about file metadata

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6871

information. Blocks are ordered sequentially by making
use of Time UUID which helps in supporting HDFS [20].

TAXONOMY OF HDFS AND CFS

Motivation behind comparison is to explore
various features of Hadoop Distributed File System and
Cassandra File System. A comparison and useful artifacts
that would help users or customers to choose the effective
Distributed File System that best suits the client
requirement and performs better secured and fault tolerant
one[21].

Architecture

Architecture of both HDFS and CFS are different.
HDFS is implemented using Master/Slave architecture
where NameNode works as Master and DataNode work as
worker node whereas Cassandra is designed with the
understanding that system/hardware failure can and do
occur and CFS follows peer to peer, distributed
architecture where all nodes are same. Data is partitioned
among all nodes in the cluster [22, 23].

Data storage model
HDFS maintains the data directly in file system.

Large files are broken into small blocks and replicated on
many data nodes [24].Cassandra gives post relational
database solution. By post relational means it does not
offers all the features of traditional databases but follows
keyspace column family to store the data and introduces
primary and secondary indexes for high availability of data

Read and write design

In HDFS, since NameNode works like master
node and keeps all metadata information hence all
read/write operation is performed via NameNode. It
internally introduces map/reduce process to achieve high
performance. CFS, since implements peer to peer
architecture.

Fault tolerance

Master/Slave architecture of HDFS achieves high
performance but vulnerable to failure when master node is
down. In CFS cluster all node in the cluster are same and
capable to handle the request. This is the most important
feature of CFS which provides edge over HDFS [25].

Area of utilization

HDFS is more powerful solution for read
intensive database for business intelligence system [26]
while CFS is more suitable for real time database for
online/transactional applications.

Mode of accessing data
Hadoop provides HDFS client which uses

Map/Reduce component to fetch the data from HDFS [27].
Cassandra File system provides Command Line Interface
and Cassandra query language tools to access the data
stored in its column family [28].

Schema

In HDFS data is persisted onto data node
machines in the form of document. [29].From Google big
table Schema is mirrored which is a row oriented column
structure used in Cassandra. Cassandra uses keyspace in
which there is a column family that is more flexible and
dynamic

Communication

Remote procedure call is used by many of
distributed file system as the method of the
communication. Two communication protocols are used
for RPC are UDP and TCP.

Data partitioning

In HDFS, data partitioning is done by Namenode.
HDFS configuration is based on the replication factor.
Cassandra file system has the ring structure in which every
node may act as master node for performing data
partitioning. Based on the row key column family data is
partitiones across the nodes.

Consistency and replication

Many of the distributed file system use checksum
to provide consistency [30]. In distributed file system
replication and caching play a very important role [31,
32]?

Load balancing

Adding or removing servers is the ability to auto-
balance the system. Tools must be provided to store them
on other servers, to recover lost data. In HDFS, if a node is
unbalanced, replicas are moved from it to another one by
communicating directly with the DataNodes [33, 34].

Security

A dedicated security mechanism in the
architecture of Hadoop is not employed. In Cassandra
based on internally controlled login accounts/passwords
gives client-to-node encryption and also for the open
source community it gives features object permission
management security [35].

Naming

In HDFS file system, NameNode is the
centerpiece which tracks the information of all files in the
file system [36]. Unlike HDFS Cassandra file system have
inode column family which uses a dynamic composite type

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6872

comparator and stores the metadata information about a
file [37].

Client access interface

HDFS connect via HDFS client only in the HDFS
consumer application. Checksum is implemented by the
HDFS client software [38]. In Cassandra command line
interfaces are used to access the Cassandra database.
Schema and Cassandra specific language are used for
performing any database operation and to access the
database in Command Line Interface while to access the
Cassandra database traditional SQL language is used in
Cassandra Query Language [39].

Indexing

HDFS does not support indexing hence limiting
its performance. To achieve Hadoop distributed indexing
Apache solr or Terrier with Hadoop can be configured for
optimizing the performance. Cassandra supports secondary
indexes of the type keys and indexing is easy [40].

Throughput and latency

HDFS reduces the write latency due to less I/O
bottleneck for large number of data nodes [41]. When
Cassandra operations are performed in parallel, excellent

throughput and latency are achieved by Cassandra.
Throughput affect negatively if Cassandra does not lock
the fast write request path.

Locking system

HDFS includes a locking mechanism that allows
clients can lock directories and files in the file system.
This indicates that the Name Node act as lock manager on
behalf of its clients [42]. In Cassandra instead of using
locking mechanisms or ACID transactions with rollback, it
offers atomic, isolated, atomic, eventual/tunable and
durable transactions.

Data persistence

In HDFS data is directly written to the data node
in single operation [43]. Cassandra, Memtable is-called as
in-memory structure in which data is first written to it and
then persisted in SSTable to the disk after the Memtable is
full.

OVERALL COMPARISON OF HDFS AND CFS

The Table-1 shows the various comparison
between Hadoop distributed file system and Cassandra file
system.

Table-1. Analysis of HDFS and CFS.

S.
No.

Parameters
Analysis of Hadoop distributed

file system
Analysis of Cassandra file system

1 Architecture
Master/Slave NameNode works as

Master and data node as worker
node.

Peer to Peer distributed architecture
where all nodes are same.

2 Data storage model
HDFS stores the data directly in file

system.
Cassandra gives post relational database

solution.

3 Read and Write Design
Write once read many access

models.
Read and write any where model.

4 Fault tolerance Failure as norm. No single point of failure.

5 Area of utilization Batch-oriente danalytical solutions.
Real time online transactional

processing.

6 Mode of accessing data
Map/Reduce for read/write

operations.
Cassandra query language and Command

line interface tools.

7 Storage schema Physical file system schema.
Combines schema from Google big table

and Amazon Dynamo.

8 Communication RPC/TCP and UDP Gossip protocol

9 Data Partitioning
NameNode breaks the data file into
smaller chunks and distributes them

across the data nodes.

On the basis of row key in the column
family data is breaks across the nodes.

10 Consistency

For each block of the file it
computes the checksums and in the
same HDFS namespace stores these
checksums in a separate hidden file.

In Write Consistency, before returning
an acknowledgement to the client

application how many replicas the write
must succeed

In Read Consistency, before a result is
returned to the client application how

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6873

many replicas must respond

11 Load balancing

For each data node the usage of the
server different from the usage of

the cluster by no more than the
threshold value.

In HDFS replicas are moved from it
to another one respecting the
placement policy if a node is

unbalanced.

The data does not automatically get
shared across new nodes equally when

adding new nodes to the cluster and
share load proportionately which makes

completely unbalanced.
By using the node tool move command

we need to shift the token range and
must be calculated in a way that involves

sharing of data equally.

12 Security

No dedicated security mechanism.
POSIX-based file permissions for

users and groups with optional
LDAP integration. Security features

in HDFS are Authentication,
service level authorization for web
consoles and data confidentiality.
Data encryption and role based
authentication is also available.

Internal authentication, managing object
permissions using internal authorization,
client to node encryption, node to node

encryption, Kerberos authentication,
transparent data encryption, data

auditing.

13 Naming Central metadata server
Cassandra comes up with ‘inode’ column

family to store meta data information.

14 Client Access Interface
A code library and HDFS client

software.
Command line interface and Cassandra

query language.

15 Indexing

Indexing is difficult. To achieve
Hadoop distributed indexing we

can configure Apache solr or
Terrier with Hadoop.

Cassandra supports secondary indexes of
the type keys. Indexing is easy.

16 Transaction rates High High

17 Throughput and latency

Reading a chunk of data can range
from tens of milliseconds in the

best case and hundreds of
milliseconds in the worst case.

Reduces write latency because of
large number of data nodes.

Unlike most databases, Cassandra
achieves excellent throughput and

latency.

18
File Locking
mechanism

HDFS give locks on objects to
clients.

Provides isolated, atomic, isolated,
transactions with eventual/tunable

consistency, durable.

19 Replication

The replication factor can be
specified At file creation time the
replication factor can be specified.
All decisions are made by Name

node regarding replication of
blocks which periodically in the

cluster receives a block report and
a Heartbeat from each of the Data
Nodes and is functioning properly
implies after receiving the Receipt

of a Heartbeat.

Using replica placement strategy creates
a keyspace based on the row key stores

copies of each row.

20 Data persistence
Data is directly written to data

node.

Data is first written in memory structure
called mem-table and when it is full
written to SStable and then to disk.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6874

ANALYSIS
On the basis of feature extraction the following

comparison on both Distributed File systems can help to
choose an appropriate distributed file system according to
the customer requirements.

Hadoop distributed file system

Suitable for application that has large data sets,
very large files, fault tolerant which ensures that in case of
any failures hardware or software there is a way to
overcome it by the use of replication factor, cost effective
as it works on commodity hardware and write once read
many access model. It does not support updates and cannot
read or modify the content. It is designed more for batch
processing. Scenario where HDFS cannot be used like low
latency accesses where you have millions of small files,
parallel write or arbitrary read.

Cassandra file system

It is used in Big Data, flexible sparse wide
column requirements, very high velocity random reads and
writes. No multiple secondary index needs is allowed.
Cassandra is not used in searching column data, dynamic
Queries on Columns, secondary indexes, relational data
transactional primary and financial records, stringent
security and authorization of data.

CONCLUSIONS

This paper tried to extract various features of
Hadoop Distributed File System, Cassandra File System
and then comparative analysis of their characteristics.

HDFS and CFS both are fast growing
technologies which deal in storage and management of
BIG data. HDFS follow Master/Slave architecture while
CFS implements peer to peer architecture. CFS peer to
peer architecture makes it no single point of failure. HDFS
cluster can be scaled horizontally by adding more nodes to
the cluster or vertically by upgrading the hardware and
software configuration. CFS combines highly dynamic and
scalable Google’s BIG table and Amazon’s Dynamo DB.
CFS either uses its query language or command line
interface to access the data stored in its database.

Finally concluded the research with comparative
study of both the file system on several parameters like
architecture, protocols for communication, area of
utilization, Data storage schema, fault tolerance etc.

REFERENCES

[1] B. Dong, J. Qiu, et al. 2010. A novel approach to

improving the efficiency of storing and accessing
small files on Hadoop: a case study by 20PowerPoint
files. In 2010 IEEE International Conference on
Service Computing (SCC), Miami. pp. 65-72.

[2] H. Zhang, Y. Han, F. Chen and J. Wen. 2011. A
Novel Approach in Improving I/O Performance of
Small Meteorological Files on HDFS. Applied
Mechanics and Material. 117-199: 1759-1765.

[3] F. Chang, J, Dean, et al. 2008. Bigtable: A Distributed
Storage System for Structured Data. ACM
Transactions on Computer Systems. 26(2): 205-218.

[4] Kalpana Dwivedi, Sanjay Kumar Dubey. 2014.
Analytical Review on Hadoop Distributed File
System. In: 2014 IEEE 5th International Conference-
Confluence The Next Generation Information
Technology Summit (Confluence).

[5] J. Xie, S. Yin, et al. 2010. Improving MapReduce
performance through data placement in heterogeneous
Hadoop clusters”, In: 2010 IEEE International
Symposium on Parallel and Distributed file system.

[6] J. Shafer and S Rixner. 2010. The Hadoop distributed
file system: balancing portability and performance. In
2010 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS2010),
White Plains, NY. pp. 122-133.

[7] E. Dede, B. Sendir, P. Kuzlu, J. Hartog and M.
Govindaraju. 2013. An Evaluation of Cassandra for
Hadoop. In: Proceedings of the 2013 IEEE Sixth
International Conference on Cloud Computing,
CLOUD ’13, pp. 494–501, Washington, DC, USA.
IEEE Computer Society.

[8] A. Lakshman and P. Malik. 2009. Cassandra:
structured storage system on p2p network. In:
Proceedings of the 28th ACM symposium on
Principles of distributed computing, PODC ’09, pp. 5-
5, New York, NY, USA, ACM.

[9] Adam Silberstein, Brian F. Cooper, Utkarsh
Srivastava. 2008. Erik Vee, Ramana Yerneni, and
Raghu Ramakrishnan, Efficient bulk insertion into a
distributed ordered table. In: Proceedings of the 2008
ACM SIGMOD International conference on
Management of Data.

[10] Adam Silberstein, Brian F. Cooper, Utkarsh
Srivastava, Erik Vee, Ramana Yerneni and Raghu
Ramakrishnan. 2008. Efficient bulk insertion into a
distributed ordered table. In: Proceedings of the 2008
ACM SIGMOD International conference on
Management of Data.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6875

[11] J. Han, H. H E and G. Le. 2011. Survey on NoSQL
Database. Piscataway, NJ, USA: IEEE. pp. 363-3.

[12] Y. Zhu, P. Yu and J. Wang. 2013. RECODS: replica
consistency-on-demand store. In 2013 IEEE 29th
International Conference on Data Engineering
(ICDE). pp. 1360-1363.

[13] R. Al-Ekram and R. Holt. 2010. Multi-consistency
data replication. In: 2010 IEEE 16th International
Conference on Parallel and Distributed Systems
(ICPADS). pp. 568-577.

[14] O. Rode, Avi Teperman. 2003. zFS A Scalable
Distributed File System Using Object Disks.
Proceedings of the 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and
Technologies (MSS’03). pp. 207-219.

[15] J. Xie, S. Yin, et al. 2010. Improving MapReduce
performance through data placement in hetergeneous
Hadoop clusters. In: 2010 IEEE International
Symposium on Parallel and Distributed file system.

[16] Chen Feng, Yongqiang Zou, Zhiwei Xu. 2011.
CCIndex for Cassandra: A Novel Scheme for
Multidimensional Range Queries in Cassandra. In:
Seventh International Conference on Semantics,
Knowledge and Grids.

[17] F. Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach Mike Burrows, Tushar
Chandra, Andrew Fikes, Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured
Data, Proceedings of 7th Symposium on Operating
System Design and Implementation (OSDI). pp. 205-
218..

[18] S. A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long. 2006. Ceph: A Scalable, High-
Performance Distributed File System, Procceding of
OSDI '06 Proceedings of the 7th symposium on
Operating systems design and implementation. pp.
307-320.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson
C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: a distributed storage system for structured
data. In: 7th USENIX Symposium on Operating
Systems Design and Implementation.

[20] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels.
2007. Dynamo:amazon's highly available key-value
store. In: Proceedings of 21st ACM SIGOPS
symposium on Operating systems principles.

[21] Tran Doan Thanh. A Taxonomy and Survey on
Distributed File Systems. Fourth International
Conference on Networked Computing.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. 2003. The
google file system. In: SOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating Systems
Principles, pp. 29-43, New York, NY, USA, ACM.

[23] J. M. Hellerstein, M. Stonebraker and J. Hamilton.
2007. Architecture of a database system. Foundations
and Trends in Databases. 1(2):141-259.

[24] Guoxi Wang, Jianfeng Tang. 2012. The NoSQL
Principles and Basic Application of Cassandra Model.
In: proceedings of International Conference on
Computer Science and Service System 2012.

[25] F. B. Schneider. 1990. Implementing fault-tolerant
services using the state machine approach: a tutorial.
ACM Computer Survey. 22(4): 299-319.

[26] F. Azzedin. 2013. Towards a scalable HDFS
architecture. In: IEEE International Conference on
Collaboration Technologies and Systems (CTS). pp.
155-161.

[27] Jing Zhang1, Gongqing Wu1, Xuegang Hu1, Xindong
Wu1. 2012. A Distributed Cache for Hadoop
Distributed File System in Real-time Cloud Services
Proceedings of the 2012 ACM/IEEE 13th
International Conference on Grid Computing. pp. 12-
21.

[28] V. Bala, E. Duesterwald and S. Banerjia. 2000.
Dynamo: a transparent dynamic optimization system.
In ACM SIGPLAN Notices. 35: 1-12.

[29] D. Abadi. 2012. Consistency tradeoffs in modern
distributed database system design: CAP is only part
of the story. Computer. 45(2): 37-42.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6876

[30] M. Shapiro, N. Preguic¸ a, C. Baquero and M.
Zawirski. 2011. A comprehensive study of convergent
and commutative replicated data types.

[31] S. B. Davidson, H. Garcia-Molina, and D. Skeen.
1985. Consistency in a partitioned network: a survey.
ACM Computer Survey. 17(3): 341-370.

[32] H. Yu and A. Vahdat. 2001. The costs and limits of
availability for replicated services. In ACM SIGOPS
Operating Systems Review, vol. 35, 2001, pp. 29-42.

[33] Thanh Cuong Nguyen. Wenfeng Shen, Jiwei Jiang,
Weimin Xu. 2013. A novel data encryption in HDFS.
In: IEEE Internatonal Conference on and IEEE Cyber,
Physical and Social Computing on Green Computing
and Communications (GreenCom). pp. 1-10.

[34] Shaochun Wu, Guobing Zou, Honghao Zhu, Xiang
Shuai, Liang Chen, Bofeng Zhang. 2013. The
Dynamically Efficient Mechanism of HDFS Data
Prefetching. In: IEEE and Internet of things
(iThings/CPSCom), IEEE International Conference on
and IEEE Cyber, Physical and Social COMPUTING
on Green Computing and Communications
(GreenCom). pp. 1-10.

[35] Kai Fan, Dayang Zhang, Hui Li, Yintang Yang. 2013.
An adaptive feedback load balancing algorithm in
HDFS, in 2013 5th IEEE international Conference on
Intelligent Networking and collaborative Systems
(INCoS). p. 28.

[36] Zhen Ye, Shanping Li. 2011. A Request Skew Aware
Hetergeneous Distributed Storage System Based on
Cassandra. International Conference on Computer and
Management - CAMAN, DOI:
10.1109/CAMAN.2011.5778745.

[37] P. Malik, Avinash Lakshman. 2010. Cassandra - a
decentralized structured storage, ACM SIGOPS
Operating System Review. 44(2): 35-40.

[38] K. Karun. A and Chitharanjan. K. 2013. Locality
Sensitive Hashing based Incremental Clustering for
creating affinity groups in Hadoop-HDFS-an
infrastructure extensión. In IEEE International
Conference on Circuits, Power and Computing
Technologies (ICCPCT 2013). p. 1243.

[39] Ymir Vigfusson, Adam Silberstein, Brian F. Cooper,
Rodrigo Fonseca. 2009. Adaptively parallelizing

distributed range queries. In Proc. VLDB Endow. 2:
682-693. VLDB Endowment.

[40] Yongqiang Zou, Jia Liu, Shicai Wang, Li Zha, and
Zhiwei Xu. 2010. CCIndex: a Complemental
Clustering Index on Distributed Ordered Tables for
Multi-dimensional Range Queries. In: 7th IFIP
International Conference on Network and Parallel
Computing.

[41] Y. Gao and S. Zheng. 2011. A Metadata Access
Strategy of Learning Resources Based on HDFS. In:
proceeding International Conference on Image
Analysis and Signal Processing (IASP). pp. 620-622.

[42] G. Zhang, Chuanjie Xie, Lei Shi, Yunyan Du. 2012. A
tile-based scalable raster data management system
based on HDFS. Geoinformatics. pp. 1-4.

[43] Zhendong Cheng, Alain Roy, Ning Zhang, Gang
Guan, You Men, Depei Qian. 2012. ERMS: An
Elastic Replication Management System for HDFS,
In: proceedings of the IEEE International Conference
on Cluster Computing Workshops. pp. 1-10.

