
 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6900

RECONFIGURABLE RESOURCE SHARING VLSI ARCHITECTURE
FOR RC5 ALGORITHM

M. Vanitha and S. Subha

School of Information and Technology Engineering, VIT University, Vellore, India
E-Mail: mvanitha@vit.ac.in

ABSTRACT

The RC5 Algorithm is a symmetric block based, cipher which has been chosen because of its features such as
simplicity of operation, implementation and its parameterizable nature. This work tries to realize the RC5 cipher on an
ASIC chip and on a FPGA. The design is optimized to improve latency, throughput, area and power constraints using
techniques such as loop wrapping, pipelining, parallel processing and resource sharing. A hardware implementation of the
cipher has the advantage of improved speed of operation compared to a software implementation and it also improves its
security. The FPGA Implementation has been done on the DE1 board while reports were taken using Xilinx ISE. The
design was made reconfigurable to accept two values of rounds and keys. The ASIC Implementation was done using a
fixed choice of parameters. The results achieved for area, throughput and power for an ASIC Implementation is presented.
The proposed solution could be used for security in a range of applications such as wireless sensor network nodes, network
devices such as routers, servers and in mobile devices.

Keywords: reconfigurable, symmetric block, throughput, power constraints, loop wrapping, security.

1. INTRODUCTION

In the past two decade with the advent of internet
and rapid improvement in wireless technologies, a wide
range of wireless devices have come into existence. These
include wireless sensors, smart cards, laptops, smart
phones etc. The list is likely to grow a lot bigger as
hardware becomes cheaper and more applications begin
taking to the wireless medium for data transfer. This brings
an issue of privacy, which was not so much of an issue in
wired devices. This is because of the very nature of the
wireless medium, where the user can tune in to a particular
frequency and listen to all the data that is being transmitted
(at that frequency) in the surroundings. Thus security is a
must when the wireless medium is considered. Security in
data communication is when only the intended recipient(s)
is able to understand the message the sender is sending.
This can be done using cryptographic algorithms.

The RC5 cipher [1, 6] was developed by Ron
Rivest. The cipher is block-based and symmetric. The
advantage of the RC5 cipher over other ciphers as the DES
[2] is its simplicity of implementation and its flexibility
due to its parameterizable nature. Also simplicity of
operations is of paramount importance to improve
operation speed. The RC5 Algorithm is simpler compared
to the widely used present day cryptographic standards as
the Advanced Encryption Standard(AES) while providing
security levels which are safe. Hence it could be used as an
alternative to these algorithms when the requirements on
area, delay and power are very stringent. This is especially
true in wireless sensor network nodes and other smart
mobile devices. Further the reconfigurable nature of the
algorithm makes it possible to specify the security level
required for the particular application by specifying the
key size and the number of rounds. Hence a common
architecture can be used for all the wireless applications

without compromising either security or speed, as the case
may be.

2. PREVIOUS WORKS

There are various methods of implementations
suggested in the literatures. An area optimized
implementation by N. Sklavos [3] et al. uses an
encryption-decryption core with resource sharing. But the
circuit uses a separate block RAM which makes data
tapping possible. Another area optimized architecture by J.
Liang [4] et al. use loop unrolling to achieve greater
throughput and a barrel shifter to reduce the area of the
shifter. An FPGA Pipelining Approach by A. Ruhan Bevi
[5] et al. further improves throughput to 6.9 Gbps while
the previous architecture achieves around 530 Mbps. The
FPGA implementation by Elkelaany [2] et al. uses a
reconfigurable architecture to accept the key size, word
size and the number of rounds as parameters from the user.

There cipher implementation followed for the
project consists of the initialization and an encryption-
decryption module (EDM). The EDM affects the
throughput of the entire system because the initialization is
done only once, whenever the key changes. So the
initialization module is area optimized, compromising on
the speed of the system. While the EDM is optimized to
improve throughput and reduce latency, while making a
compromise for the area. Throughput is improved by using
a pipelining approach and the latency is reduced by using
barrel shifter for shift operations

3. RC5 ALGORITHM

The algorithm uses series data dependent
rotations heavily to randomize the data during encryption.
The decryption stage performs the inverse of the

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6901

operations performed in the encryption stage to obtain the
original data or plain text. Both the encryption and
decryption stages use the expanded version of the key
called as S array for their operations.

The flexibility of the algorithm is due to the fact
that the word length (W), key size (b) and the number of
rounds (R), are variable. Their values can be adjusted
depending on the requirements. The word length specifies
the number of bits in each word which the algorithm takes
as input. Increasing the word length increases the
throughput. But in software implementations, it is
necessary to consider the register size of the CPU. Any
length greater than the size of the CPU registers degrades
performance. The key size is the length of the key (in
bytes). Increasing the key size improves security by
reducing vulnerability to rainbow or brute force attacks.
The number of rounds specifies the number of iterations in

the encryption and decryption procedures. Apart from
randomizing the data even further, it increases the
encryption and decryption times which is a trade-off for
security, because it makes brute force attacks difficult or
even not possible.

3.1 S-Box initialization
This stage takes the key as input which is used to initialize
the S-Array. The S-Array is used in the encryption and
decryption stages. The length of the array depends on the
number of rounds chosen. The block diagram
representation of the S-array Pre-initialization and Key
word initialization as L-array is shown in Figures 1(a) and
(b) respectively. The flow chart of the operation of S-array
initialization is shown in Figure-2.

Figure-1(a). S-Array Pre-initialization. Figure-1(b). L-Array initialization.

3.2 Encryption

In the Encryption module, 2 words of data are
taken and encrypted with the help of the S Array created in
the previous stage. The block diagram representation for

one stage of encryption is given in Figure-3. The major
operation includes shifting, addition, complement and
EXOR.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6902

Figure-2. S-Array initialization.

Figure-3. Encryption flowchart.

3.3 Decryption

Decryption module is the reverse of, the
operations performed in the encryption stage, which is

used to obtain the plaintext. The block diagram
representation for one stage of decryption is shown in
Figure-4.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6903

Figure-4. Decryption flowchart.

4. TECHNIQUES FOLLOWED

The VLSI architecture developed uses the
following techniques to come up with efficient hardware
architecture. The detailed discussions of the techniques are
as follows.

4.1 Loop wrapping

If a sequential approach is taken, the critical path
is the path between the key input and encrypted data at the
output. This path hence decides the clock period. It is
hence beneficial to divide the operations in the
initialization phase over multiple clock cycles. Moreover

the initialization module is used only once for each new
key. The multiple loop present in the initialization phase
iterates tens times. (78 for 12 rounds).

Without clock it is implemented as a set of
identical modules in cascade. This ‘FOR’ loop can be
wrapped into a single module with a clock and enable
input. The enable input stays high for the required number
of clock cycles after which it is disabled. This also reduces
the area of the initialization module by a significant
percentage. The wrapped and unwrapped architecture for
multiple rounds is shown in Figures 5(a) and (b)
respectively.

Figure-5(a). Wrapped Loop.

Figure-5(b). Unwrapped Loop.

4.2 Pipelining

The encryption and decryption portion in the core
consists of many ‘FOR’ loops which are again synthesized
as a series of identical modules connected in series.

Whenever new data appears at the input each module does
a small portion of the encryption operation and passes it to
the next module. Each module remains idle after before
and after performing its operations. This path is connecting

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6904

all the modules is also the critical path which decides the
clock period and hence the throughput of the system. It is
hence beneficial to follow a pipelining approach by
providing a clock input to each of these modules and
enabling them each time the output from the previous

module is available. This increases throughput, so that
output appears at the end of each clock cycle.

The drawback of pipelining is the increase in
latency and a slight increase in area. The pipelined
architecture is shown in Figure-6.

Figure-6. Pipelined architecture.

4.3 Resource sharing

A common resource sharing architecture is used
for both encryption and decryption round. This reduces the
need for additional registers by reusing the existing
hardware. The resources are shared based on the need by

appropriate timing network. There are also resources
shared in the combinational logic itself, which prevents the
need for additional identical circuits. A resource sharing
architecture is shown in Figure-7.

Figure-7. Resource sharing.

5. IMPLEMENTATION

The RC5 algorithm is implemented both in
software and hardware. The functional verification of the
encryption and decryption is done in software and
hardware architecture for RC5 is implemented in both
FPGA and ASIC platform.

5.1 Software

The RC5 Algorithm was first implemented using
C language. The output obtained for particular values of
input and parameters was functionally verified by
performing the encryption and decryption. The simulated
result shown in Figure-9 proves the correctness of the code
modeling using C.

The same algorithm was again modeled using
Verilog HDL for hardware development. The simulation
was done using ModelSim. The output obtained after

simulation is shown in Figure-10. The simulated results
were compared with the C output to ensure correct
implementation.

5.2 Hardware

For hardware implementation we plan to go for
both FPGA and ASIC mode of implementation. The
FPGA implementation results are compared with the
existing and a dedicated ASIC chip is developed for RC5.

5.2.1 FPGA

The verilog code was synthesized and dumped
onto the DE1 FPGA board using QUARTUS II Software.
The key and data were coded into the Verilog [7, 8 and
10]. The output was displayed using the hexadecimal
display present on the board.The design was made
reconfigurable to accept two different values of round and

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6905

keys. The output obtained from the board was verified
with the output of the C program programmed with same
values of inputs and parameters to ensure correct
functionality.

The Xilinx ISE was used to get the reports for
comparison with existing [2] results in literature. The
target board chosen was Virtex 6 board and FPGA device
chosen was 6vlx75tff484-3.

5.2.2 ASIC

The verilog code was synthesized using 90nm
technology from TSMC. Unlike the FPGA platform this
architecture is not reconfigurable in the real sense. The
verilog code was first compiled, elaborated and simulated
using the NC Launch tool in Cadence to verify output and
check for errors. Then the RC compiler was invoked to
synthesize the technology mapped design of the circuit.
The tool generates the netlist and constraint files used in
the backend process. Also the Area, Timing and Power
reports were taken after the synthesis process. The
Encounter tool was used for backend process. After the
various stages, the GDSII file was generated. The report
generated was used to check for violations and
comparison.

6. SIMULATION AND SYNTHESIZED RESULTS

The synthesized reports for both FPGA and ASIC
platform [9] are compared with the existing and reports are
tabulated. Table-1 shows the power consumption of RC5
architecture in ASIC with 90nm. The area and timing
reports are shown in Tables 2 and 3. The resource
comparison for FPGA synthesize is shown in Figure-4.
The throughput comparison shows 62% throughput
improvement and 56.7% area reduction compared with
[2].The photocopy of the routed ASIC chip is shown in

Figure-8 and the complete FPGA implementation setup in
Figure-11.

Table-1. ASIC power report.

Instance Cells
Leakage
power
(W)

Dynamic
power
(W)

Total
power
(W)

rc5_v6 32735 3.25 16984.76 1698801

Table-2. ASIC area report.

Instance Cells Cell area

rc5_v6 32735 69525

Table-3. ASIC timing report.

Timing reports

Clock Period 12ns

Timing Slack 1ps

Throughput 5.33 Gbps

Table-4. Results comparison for FPGA.

Architecture
Throughput

(Mbps)
Slices used

Elkeelany et al [2] 300 3618

Proposed
(without pipelining)

241 5343

Proposed
(with pipelining)

488 5673

Figure-8. Routed layout.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6906

Figure-9. Output of RC5 C implementation.

Figure-10. Output of Verilog simulation using model SIM.

Figure-11. FPGA setup for RC5 DE1 output snapshot.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 6907

7. CONCLUSIONS
In this paper, we have done both FPGA and ASIC

Implementations of the RC5 cipher. The FPGA
Implementation has been made reconfigurable to
demonstrate the flexibility inherent in the algorithm. The
ASIC Implementation has been optimized using
techniques such as loop wrapping, resource sharing,
pipelining to improve parameters such as area, power and
throughput. The FPGA implementation has been done on
DE1 board and the Xilinx ISE tool has been used to
generate various reports. The ASIC implementation has
been done using Cadence Tools. The FPGA result has
been compared with the implementation by Elkelaany [2].
The proposed architecture shows a throughput
improvement of 62% with area reduction of 56%. The
ASIC implementation can be used as a module in existing
network devices where security is of importance. Further
the parameters used could be changed to suit the
application requirement of speed or security.

REFERENCES

[1] Ronald L. Rivest. 1995. The RC5 Encryption

Algorithm. Proceedings of the 1994 Leuven
Workshop on Fast Software Encryption (Springer
1995), pp. 86-96

[2] Omar Elkelaany, Adegoke Olabisi. 2008. Performance
Comparisons, Design, and Implementation of RC5
Symmetric Encryption Core using Reconfigurable
Hardware. Journal of Computers. 3(3): 48-55.

[3] N. Sklavos, C. Machas, O. Koufopavlou. 2003. Area
Optimized Architecture and VLSI Implementation of

RC5 Encryption Algorithm. In: Proc. of 10th IEEE
International Conference on Electronics, Circuits and
Systems (IEEE ICECS'03). 1: 172-175, United Arab
Emirates.

[4] Jing Liang, Qin Wang, Yue Qi, Feng Yu. 2009. An
Area Optimized Implementation of Cryptographic
Algorithm RC5. Wireless Communications,
Networking and Mobile Computing, 2009. WiCom
'09. 5th International Conference.

[5] A. Ruhan Bevi, S.S.V. Sheshu, S. Malarvizhi. 2012.
FPGA Pipelined Architecture for RC5 Encryption.
Digital Information and Communication Technology
and its Applications (DICTAP), 2012 Second
International Conference.

[6] Bruce Schneier. 1996. Applied Cryptography. Wiley.

[7] Samir Palnitkar. 1996. Verilog HDL - A Guide to
Digital Design and Synthesis. Prentice Hall.

[8] Charles H Roth. 1995. Introduction to Logic Design.
West Pub. Co.

[9] Michael D Ciletti. 1999. Modeling, Synthesis and
Rapid Prototyping with the Verilog HDL. Prentice
Hall PTR.

[10] M Morris Mano. 1979. Digital Logic and Computer
Design. Prentice Hall.

