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ABSTRACT 

Hyper Spectral Imaging (HSI) gathers and processes information from across the electromagnetic spectrum. The 

information enclosed in hyperspectral data permits the characterization, recognition and classification of the land-covers 

with enhanced accuracy and robustness. On the other hand, quite a lot of vital complications must be considered during the 

classification process of hyperspectral data, among which the maximum quantity of spectral channels, the spatial 

unevenness of the spectral signature, shape discovery of the images and the value of data. Above all, the maximum 

quantity of spectral channels and low number of labeled training samples pose the setback of the curse of dimensionality 

and, accordingly, result in the possibility of overfitting the training data. With the aim of solving all these complications, in 

this work presented the framework of Support Vector Machine (SVM) together with Fuzzy Sigmoid Kernel Function 

(SVM-FSK) in the circumstance of HSI classification and analyzing their features in the hyperspectral domain. A Kernel 

Fisher Discriminant Analysis (KFDA) model is employed for the purpose of dimensionality reduction of HSI. The KFDA 

dimensionality reduction scheme depends on the selection of the kernel in a higher-dimensional HSIfeature space. In order 

to enhance the gradient level of spatial information employed Improved Empirical Mode Decomposition (IEMD) with 

Gaussian Firefly Algorithm (GFA) (IEMD-GFA) to boost the mixed pixel wise SVM-FSK classification accuracy. During 

the process of IEMD scheme, the identifiable of Intrinsic Mode Functions (IMFs) of spectral band, weight values of IMFs 

are computed with the help of GFA. In order to identify the shape of HSI, novel hybrid scheme depending on the canny 

operator and fuzzy entropy theory is formulated. This scheme computes the fuzzy entropy of gradients from an image to 

make a decision on the threshold for the canny operator. For the purpose of detecting the edges and to discover the shape of 

the object Weibull Probability Density Function (WPDF) scheme is used. The obtained both spectral and spatial pixels are 

classified using SVM-FSK and estimated by using HierarchicalDirichlet Process (HDP) –Hidden Markov Model (HMM). 

The proposed SVM-FSK is assessed with hyperspectralAVIRIS Indian Pine dataset. It shows that the proposed 

dimensionality reduction with SVM-FSK classification shows improved classification accuracy in terms of parameters like 

overall accuracy, standard deviation and mean.   

 

Keywords: pixel wise characterization, hyper spectral images (HSI), hidden markov model (HMM), hyperspectral image classification, 

support vector machine (SVM), gaussian firefly algorithm (GFA), spectral gradient enhancement, shape detection, canny edge detection, 

weibull probability distribution function (WPDF), hierarchical dirichlet process (HDP) -hidden markov model (HMM). 

 

1. INTRODUCTION 

Hyper Spectral Images (HSI) are made up of 

hundreds of bands with an extremely high spectral 

resolution, from the perceptible to the infrared region. The 

extensive spectral range, combined with constantly 

increasing spatial resolution, permits to better differentiate 

materials and provides the capability to locate ground 

between spectrally close ground classes, making 

hyperspectral imagery appropriate for land cover 

classification. Owing to their characteristics, hyperspectral 

data have, at present, gained an incessantly growing 

interest among the remote sensing group of people [1], [2]. 

The one most important concern in the extremely high 

spectral resolution of remotely sensed hyperspectral data 

[3], is the high dimensionality and it introduces a new 

challenge in the spectral-spatial feature extraction 

classification of the HSI. In order to overcome this 

complication, the proposed system makes use of a high 

dimensionality spectral image for the purpose of 

classification in HSIprocessing. 

The enormous amount of information and the 

high spectral resolution of HSIoffer the chance to resolve 

complications which typically cannot be solved through 

multispectral images. On the other hand, quite a lot of 

significant issues required to be considered during the 

classification process for this category of images. During 

the classification of HSI, the higher dimensionality of the 

data boosts the potential to identify and differentiate 

several classes with better accuracy. HSIclassification is 

the process which is employed to generate thematic maps 

from remote sensing image. Classification in remote 

sensing includes the process of clustering the pixels of an 

image to a set of classes in order that pixels in that 

particular class are having comparable features. Kernel-

based classification scheme like Support Vector Machines 

(SVMs) has been famous and utilized broadly in the 

process of HSIclassification in recent years [4]. The most 
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important motivation of the attractiveness of kernel-based 

schemes, and SVM specifically, are relatively higher 

classification accuracies and lower sensitivity to the high 

dimensions of data [5]. One more useful feature of SVMs 

is their better generalization capability, resulting in sparse 

solutions [5]. In case of kernel-based schemes, kernel 

functions are fundamentally utilized to discriminate among 

classes that are not linearly separable, by means of 

mapping the data to a higher dimensional space. 

The large dimensionality of the data in the 

spectral domain guides to theoretical and practical 

complications for classification of HSI. This complication 

is solved with the help of a signal-analysis scheme like 

Empirical Mode Decomposition (EMD), which will 

produce a collection of Intrinsic Mode Functions (IMF) 

[6]. The decomposition process of EMD is completely 

based on the magnitude of the original signal with a range 

of intrinsic time scales, explicitly; it decomposes the signal 

into dissimilar frequency elements. The EMD has been 

extensively employed in recent decades for the purpose of 

time-domain signal processing, and was also employed to 

decompose the time-sequence signal in order to find out 

the intrinsic information [7]. For effective functioning of 

EMD, the variations in both frequencies and amplitude 

have to be adequate for decomposition analysis. In case if 

the physical criteria for the variations between two signals 

are not satisfied, the sifting process obtains an IMF with 

single tone modulated in amplitude in place of a 

superposition of two unimodular tones. As a result, the 

modulated signal would no longer follow the features of 

the original signals. Hence, it is essential to overcome this 

complication of mode mixing, and for this purpose 

proposed an improved Empirical Mode Decomposition. 

EMD has been initially formulated for 1-D and 2-

D signals in [8] [9], which makes use of geodesic operator-

based morphological processes to identify the extremum 

points and Radial Basis Function (RBF) interpolation for 

the purpose of extracting the envelopes. A Kernel Fisher 

Discriminant Analysis (KFDA) scheme utilized a Weibull 

Probability Density Function with continuous wavelet 

transforms (WPDF) for the purpose of extraction and 

estimates the edge characteristics of the HSI. 3-D EMD 

was formulated in [10]. In this work, the 3-D improved 

EMD method is presented. 

However, the above mentioned classification 

scheme doesn’t work under mixed wise categorization for 
HSI images and shape based edge detection is also not 

done at some stage in dimensionality reduction process in 

HSI images. On the other hand, none of the existing 

schemes pays attention to shape detection results and 

spectral information embedding in terms of mixed pixel 

representation and efficient characterization of spatial data 

representation, which is one of the foremost challenges in 

the HSIclassification. In view of the fact that edge 

information from an image can be utilized to determine or 

identify objects in images. Edges signify considerable 

transformations in the image, preferably at the boundary 

among two different regions. Also, false edges are 

commonly detected, and (parts of) vital edges are omitted. 

As a result, subsequent to edge detection there remains the 

setback of obtaining significant information regarding 

object boundaries with edges. Hence, it is believed that the 

classification of edges in, for instance, geometry edge, 

shadow edge, material edge or highlight edge, is helpful. 

Intensity-based edge detectors cannot differentiate the 

physical cause of an edge. A number of effective schemes 

for edge detection in normal (one-band) images are 

available [11]. There are numerous methods to integrate 

the edge gradients computed from the several color bands.  

In this paper, hyper-spectra are therefore used to classify 

the edges. In addition, it is essential to find the way to 

employ the spatial information of the pixels to enhance 

performance of HSIclassification still requires more 

investigation. In this paper, the present work to hybrid 

Canny Edge Detection (HCED) schema is extended to 

detect the edges and shapes of the HSI images and 

classification scheme to operate on shape derived from 

hyper-spectra. Given the hyper-spectral gradients, 

subsequently the 3-D improved EMD (IEMD) is executed 

to each spectral band to get hold of a finite number of 

IMFs. Then Improved Empirical Mode Decomposition 

(IEMD) scheme is employed to enhance gradient level of 

spatial data in order to separate identifiable of Intrinsic 

Mode Functions (IMFs) of each band of the spectral data 

and optimum weights of the band obtained IMFs for 

reconstruction. Gaussian Firefly Algorithm (GFA) scheme 

is utilized to map all the optimum weights of the band 

obtained IMFs. The IMFs are summed by means of these 

weights to reconstruct the features that are employed in 

mixed pixel wise classification framework is carried out in 

accordance with the semi hidden markov model in Support 

Vector Machine (SVM)-Fuzzy Sigmoid Kernel (FSK). It is 

shown in results that the proposed scheme provides a 

significant increase in accuracy for HSIclassification. The 

main objective of this work is to completely use of spectral 

and spatial data for classification task to get exact land 

cover and land use class results. Classification of fewer 

number of HSIdata samples has been more concentrated in 

a wide range of investigation recently. 

 

2. RELATED WORK  

Chen, et al, [12] formulated a new sparsity-based 

approach for the classification of hyperspectral imagery. 

Two different schemes were formulated to incorporate the 

contextual information into the sparse recovery 

optimization problem with the aim of improving the 

classification accuracy. In the first scheme, an explicit 

smoothing constraint is enforced on the problem 

formulation by means of forcing the vector Laplacian of 

the reconstructed image to become zero. In this scheme, 

the reconstructed pixel of significance has comparable 

spectral features to its four nearest neighbours. The second 

scheme is using a joint sparsity model in which 

hyperspectral pixels in a small neighbourhood in the 

region of the test pixel are concurrently represented by 

linear combinations of a small amount of common training 



                               VOL. 10, NO. 16, SEPTEMBER 2015                                                                                                         ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      6967 

samples, which are weighted with a diverse set of 

coefficients for each pixel.  

Chen, et al [13] formulated a novel nonlinear 

scheme for HSI classification. For every test pixel in the 

feature space, a sparse representation vector is acquired by 

means of decomposing the test pixel over a training 

dictionary, in addition in the same feature space, with the 

help of a kernel-based greedy pursuit approach. The 

recovered sparse representation vector is then employed 

directly to find out the class label of the test pixel. By 

means of projecting the samples into a high-dimensional 

feature space and kernelizing the sparse representation 

considerably develops the data separability among 

different classes, offering better classification accuracy.  

Jabari et al. [14] formulated a segmentation and 

fuzzy rule-based classification for extremely high 

resolution satellite images. The process of classifying 

extremely high resolution images is incredibly challenging 

because there are uncertainties in the location of the object 

borders. As a result, a fuzzy-rule based classification 

shows evidence of more promising solution to this 

challenging task. At first, the input image is segmented 

into shadows, vegetation, and roads by means of 

eCognition software. Subsequently, triangular and 

trapezoidal fuzzy functions are employed to allocate 

membership values to those segmented regions.  

Ji et al [15] formulated a HSIclassification 

scheme to consider both the pixel spectral and spatial 

parameters, in which the association among pixels is 

planned in a hypergraph structure. In the hypergraph, 

every vertex indicates a pixel in the HSI. And the 

hyperedges are composed from both the distance among 

pixels in the feature space and the spatial positions of 

pixels. To be exact, a feature-based hyperedge is produced 

with the use of distance among pixels, where each pixel is 

linked with its K nearest neighbors in the feature space. 

Subsequently, a spatial-based hyperedge is produced to 

model the outline among pixels by connecting where each 

pixel is connected with its spatial local neighbors. Both the 

learning on the combinational hypergraph is done through 

mutually examining the image feature and the spatial 

layout of pixels to look for their joint optimal partitions.  

HSIclassification approach by using pixel spatial 

relationship was formulated by Gao, Y., and Chua [16]. In 

case of HSIs, the spatial association among pixels has been 

revealed to be significant in the examination of pixel 

labels. In order to better employ the spatial information, it 

is essential to estimate the correlation surrounded by pixels 

in a hypergraph structure. In the constructed hypergraph, 

each pixel is indicated by a vertex, and the hyperedge is 

built with the help of the spatial neighbors of each pixel. 

Semi-supervised learning on the constructed hypergraph is 

done for HSIclassification. 

Li et al [17] formulated a new structure for the 

improvement of generalized composite kernel machines 

for HSIclassification. Build a new family of generalized 

composite kernels which show signs of enormous 

flexibility when integrating the spectral and the spatial 

information enclosed in the hyperspectral data, without 

any weight constraints. The classifier implemented in this 

scheme is the multinomial logistic regression, and the 

spatial data is modeled from extended multiattribute 

profiles. With the intention of providing the better 

performance, SVM are also employed for evaluation 

purposes.  

Demir and Erturk [18] attempted to increase the 

classification accuracy of HSIswith the process of fusing 

spectral magnitude features and spectral derivative 

features. Principal Component Analysis (PCA) is 

employed as feature extraction scheme to decrease the 

final number of features of the hyperspectral data prior to 

feature fusion. PCA is executed independently to 

magnitude and derivative features to find out important 

constituents of each. Different fusion schemes of the 

important constituents of magnitude features and the 

important constituents of the first in addition to second 

spectral derivatives are assessed to build the desired 

number of final features. SVM classification is employed 

for the purpose of classification of HSIfollowing feature 

fusion. 

Kalluri et al [19] formulated an effective scheme 

for the decision-level fusion of the spectral reflectance 

information with the spectral derivative information for 

robust land cover classification. This scheme is different 

from since an effective classification strategies is 

implemented to get rid of the increased over-

dimensionality complication introduced by the addition of 

the spectral derivatives for hyperspectral classification.  

Weng and Barner [20] formulated a modified 

scheme for signal reconstruction depending on the EMD 

that improves the capability of the EMD to satisfy a 

specified optimality criterion. This reconstruction 

approach provides the best estimate of a particular signal 

in the minimum mean square error sense. Two different 

formulations are provided. The first formulation uses a 

linear weighting for the IMF. The second approach adopts 

a bidirectional weighting, specifically, it not only makes 

use of weighting for IMF modes, however also makes use 

of the correlations among samples in a specific window 

and performs filtering of these samples. 

 

3. PROPOSED METHODOLOGY  

In this work, largely concentrated on HSI images 

and demonstrates the most significant uniqueness of pixel 

for spatial and spectral domain. Having narrow band 

intervals allows the extension of discovery and 

classification actions to targets earlier not noticeable in 

multispectral images. For several applications, 

dimensionality reduction is an essential preprocessing 

phase to acquire a smaller set of characteristics that 

summarize the information in the HSIcube without losing 

any significant information and as a result circumvent ‘the 
curse of dimensionality’. In HSI methods all of the 
methods extract spectral and spatial features pixels, which 

don’t exactly extract shape of the image. This work 
proposes a novel canny edge detection methods to extract 
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the edge features of the images and then the extracted edge 

features are estimated with the help of Weibull Probability 

Density Function (WPDF) with continuous wavelet 

transforms. Each observation from WPDF represents the 

shape of the image in accordance with the gradient value 

from hybrid canny edge detection method. In this work 

initially carry out dimensionality reduction with the 

assistance of Kernel Fisher Discriminant Analysis 

(KFDA). This method maps the entire hyperspectral data 

from the original feature space and maps the useful 

features. KFDA scheme is employed for the purpose of 

dimensionality reduction which represents a high 

dimensional feature space defined implicitly by means of a 

kernel function. Subsequently, Improved Empirical Mode 

Decomposition (IEMD) scheme is applied to improve 

gradient level of spatial data to separately identifiable of 

Intrinsic Mode Functions (IMFs) of each of band. In the 

process of IEMD scheme, IMFs weight values are 

determined by means of Gaussian Firefly Algorithm 

(GFA). IMFs are employed as feature data vector for 

Support Vector Machine–Fuzzy Sigmoid Kernel (SVM-

FSK) classification framework. The FSK is employed as a 

kernel function in an SVM classification framework in 

order to classify even the mixed pixels HSI images. The 

objective function results of the FSK-SVM are estimated 

based on the Hierarchical Dirichlet Process (HDP) - 

Hidden Markov Model (HMM). Proposed work 

representation of the entire system is illustrated in Figure-

1. 

 

3.1 Dimensionality reduction using Kernel Fisher  

      Discriminant Analysis (KFDA)  

In this paper, proposed a Kernel Fisher 

Discriminant Analysis (KFDA) scheme [21] for the 

purpose of removing and reducing the feature space for 

HSI is defined implicitly by means of a kernel. The 

effectiveness of KFDA scheme is completely based on the 

selection of the kernel. Consider ܺ = ሺݔଵ, … ,௡ሻݔ ݔ א � 

represents the HSI samples which is a random subset of ℝ௡, for every image samples the spatial and spectral 

features of the samples is indicated as ݔ א ℱ ,ଵݏ݂}= …  A symmetric .݉ ݋ݐ ௠} as the feature from ͳݏ݂

function ܭ:ℱ × ℱ → ℝ is known as kernel function 

among two hyper spectral features when it meets the 

finitely positive semi-definite characteristic: For any hyper 

spectral features samples ݂ݏଵ, … ܩ ௠ the gram matrixݏ݂ א ℝ௠×௠ is given as, 

௜௝ܩ  = ௜ݏ݂)ܭ ,  ௝)                                                             (1)ݏ݂

 

 Kimplicitly maps the input HSI samples with 

featuresܨ with a high-dimensional Hilbert space ℋ 

equipped with the inner product ۃ. , .  ℋ by means of aۄ

mapping feature space �:ℱ → ℋ. 

,݋ሺܭ  ሻ݌ = ,ሻ݋ሺ�ۃ �ሺ݌ሻۄℋ , ,݋∀ ݌ א ℱ                               (2) 

 

Inner product ۃ�ሺ݋ሻ, �ሺ݌ሻۄℋ  is known as Hilbert 

space. This space is also called as feature space, it is 

completely based on the kernel function ܭ and will be 

indicated as �௞&ℋ௞ . The feature space of the HSI samples 

is given in the type of objective function ℎሺ݂ݏሻ, in order to 

learn hyper spectral feature samples decision is done 

between two dissimilar feature samples in the kernel 

function ℋ௞ ∶  
 ℎሺ݂ݏሻ = ሻݏ௧�௞ሺ݂ݓሺ݊݃ݏ + ܾሻ                                         (3) 

 

Where ݓ א ℋ௞  indicates the feature vector 

weight values ܾ א ℝ be the bias value for feature samples 

is the intercept, and  

ሻݑሺ݊݃ݏ  = { ݑ ݂݅ ݁ݎݑݐ݂ܽ݁ ݁ݒ݅ݐ݅ݏ݋݌ > Ͳ݊݁݃ܽݑ ݂݅ ݁ݎݑݐ݂ܽ݁ ݁ݒ݅ݐ < Ͳ                        (4) 

 

The data which are necessary to perform KFDA 

are the means and covariances for dimensionality reduced 

features in the feature space. In actual fact, to carry out 

dimensionality reduction process for HSI samples KFDA 

with the sample means, 

௄ߤ  = ଵ௠∑ �௞ሺ݂ݏ௜ሻ௠௜=ଵ                                                        (5) 

 ∑௄ = ଵ௠∑ �௞ሺ݂ݏ௜ሻ௠௜=ଵ −  ௄                                             (6)ߤ

 

The fundamental concept of KFDA is to find a 

track in the HSI feature space ℋ௞  onto which the 

projections of the two sets between two different hyper 

spectral feature samples are well separated. Specifically, 

the separation between two different features of hyper 

spectral features is measured by the ratio of the variance 

and mean. Consequently, KFDA maximizes the FDR, 

,ݓఒሺܦܨ  ሻܭ = ቀ௪�ሺఓ�ሻቁమ௪�ሺ��+ఒ�ሻ௪                                                 (7) 

 

Where ߣ indicates a positive regularization 

parameter and I indicates the identity operator in HSI 

feature space ℋ௞ . The weight value of the every feature 

space is decided in accordance with the Gaussian Firefly 

Algorithm (GFA), can show that the weight vector for 

feature space, 

∗ݓ  = ሺ�௄ + .ሻ−ଵܫߣ ሺߤ௄ሻ                                                  (8) 

 

increases the FDR. The maximum FDR is realized by ݓ∗ 
is given by,  

ሻܭఒ∗ሺܦܨ  = ℋೖ{଴}א௪ݔܽ݉ ,ݓఒሺܦܨ ሻܭ = ሺߤ௄ሻ்ሺ�௄  ௄ሻ                                                                         (9)ߤሻ−ଵሺܫߣ+
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Figure-1. Entire architecture of proposed work. 

 

3.2 Shape detection using hybrid canny edge  

      detection and WPDF 

 During this phase, the shape is detected from HSI 

samples by applying Hybrid Canny Edge Detector to 

obtain edge pixels as Primitives. HSI samples are divided 

into sub-images with every sub-image then processed 

using a revised canny operator [22]. The output image is 

constructed by means of assembling results from these 

sub-images. A typical canny operator makes use of the 

following phases to extract edges:  

 

 Eliminate white Gaussian noise by means of 

smoothing the image using a Gaussian filter.  

 Compute the magnitude and direction of the gradient 

at every pixel. Consider ݂ሺݔ,  ሻrepresents raw HSIݕ

Laplacian of Gaussian operator (LoG) has been found 

that makes use of the second-order image derivative, 

also known as Laplacian magnitude, for the purpose 

of extracting edges. The Laplacian magnitude is given 

as,  

,ݔଶ݂ሺߘ  ሻݕ = �మ௙ሺ௫,௬ሻ�௫మ + �మ௙ሺ௫,௬ሻ�௬మ                                       (10) 

 

 When the gradient’s magnitude at the processing 
point is bigger than the two neighbours’ gradients, 
when placed in the gradient route, the processing 

pixel is spotted as the edge. If not, it is regarded as the 

background.  

 Make use of hysteresis thresholding to eliminate weak 

edges. 

 

 Applying this scheme to real HSIsamples 

observed that inaccuracies in segmentation outcome 

principally from step 3, because it is a process that is 

extremely sensitive to noise. This is the cause why an 

substitute scheme is formulated depends based on Fuzzy 

Entropy is initiated. Fuzzy entropy is a kind of entropy of a 

fuzzy set indicating the information of ambiguity for the 

entire categories of images and applications. It is normally 

employed to quantify the value of input image and P(X) as 

the probability mass function for HSI samples, 

subsequently the equivalent entropy H is given as follows: 

ሻݔሺܪ  = ∑ ܲሺݔ௜ሻܫܪሺݔ௜ሻ௜ = −∑ ܲሺݔ௜ሻ ௕݃݋݈ ܲሺݔ௜ሻ௜         (11) 

 

whereܫܪindicates the information content of HSI samples ݔ and b is the base of the logarithm. 

In case of a HSI, there are typically two classes, 

objects and background. When a membership function is 

characterized, the degrees of spectral and spatial pixels 

belonging to the diverse sets can be computed. In 

accordance with the obtained memberships, spectral and 

spatial pixels can be divided into correct groups; the 

fundamental concept behind pixel clustering. Here, the 

Fuzzy Entropy theory is employed to differentiate 

gradients for edges from ones generated by noise. The 

gradients of the HSI produced with the canny operator are 

a set of values which can be categorized into two groups, 

edges and noise. At this point, the membership functions, ߤ, are given as, 

௫ߤ  = { Ͳ, ௕−௫௕−௔ݔ , ܽ ൑ ݔ ൑ ܾͳ, ݔ > ܿ                                                    (12) 

 

As a result, the gradient increases the joint 

entropy of this fuzzy set is fixed as the threshold. The 

conception of joint entropy was initially formulated in 

[16]. Consider the entropy as ܪ, in order that the entropy 

for set of edges from hyper spectral image A can be given 

as follows, 

ሻܣሺܪ  = −∑ ఓ�ሺ௝ሻℎೕ௉ሺ஺ሻ௅௝=ଵ ݃݋݈ ఓ�ሺ௝ሻℎೕ௉ሺ஺ሻ                                   (13) 

 

whereܲሺܣሻ represents the probability value of edges 

corresponding to the hyper spectral image A, ℎ௝ = ேೕே೟�೟�೗, ௝ܰ represents the number of points whose gradient is 

equivalent to ݆ and ௧ܰ௢௧௔௟ indicates the number of total 

points. Thus, the joint entropy is given as, 

ሻܤܣሺܪ  = ሻܤ|ܣሺܪ + ሻܤሺܪ ൑ ሻܣሺܪ +  ሻ                (14)ܤሺܪ
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They happen to be equivalent if and only if these 

two sets of data are independent. Based on (14), it is clear 

that the process of thresholding is converted to that of 

discovering the maximum of the total entropy of gradients. 

The detected edge pixels from HSI samples are provided 

as two directions ሺݔ, ሻݕ א  Edge pixels obtained from .ܫܪ

hybrid canny edge detection schemes to discover the edges 

of the HSI samples to determine the shape of the object. 

For this purpose, Weibull Probability Density Function 

(WPDF) probabilistic framework is employed. Hence, 

characterize possible edge pixels as continuous random 

PDF variables. Subsequently, estimate the shape edge 

pixels in accordance with their PDF by considering the 

extracted edge pixels as observations. WPDF with 

continuous random variables is characterized for extracted 

edge pixels. The Weibull distribution that functions in 

accordance with the shape parameter value is a versatile 

most extensively lifetime distributions in consistency 

engineering, consequently constituting the features of 

other categories of distributions. The 3-parameter WPDF 

is given as:  

 ܰሺݔ, ሻݕ = �� ቀ௫−௬� ቁ�−ଵ ݁−ቀ�−ം� ቁഁ
                                      (15) 

 

Where ݐ ൒ Ͳ, ߚ > Ͳ, ߟ > Ͳ,−∞ < ߛ <   scale parameter=ߟ  ∞+

ߚ = slope parameter  ߛ = location parameter values for HSI. 

This WPDF meets the two constraints as, 

 ∑ ∑ ܰሺݔ, ሻݕ = ͳ &௬௫ ܰሺݔ, ሻݕ ൒ Ͳ, ∀ሺݔ,  ሻ                     (16)ݕ

 

3.3 Improved EMD for spectral gradient  

Subsequent to feature dimensional space results 

from the KFDA scheme, carried out mixed pixel wise 

characterization probabilistic classification framework to 

enhance the classification rate of HSI images. For that 

function, initially required to approximate gradient level of 

the HSI images in inside lessens feature space 

hyperspectral data for both spectral and spatial data. The 

gradient level of spectral data is approximated by means of 

Empirical Mode Decomposition (EMD) methods and 

spectral information data are reorganized with the help of 

IMFs. In this paper, IMFs takes part considerable role to 

enhance the gradient level of spatial data, as a result the 

computation of weight values for IMF becomes also 

significant. The weight values of the IMF ܱܵܨܯܫ ௜ܹ are 

computed using Gaussian Firefly Algorithm (GFA) [23], it 

enhances the classification accuracy rate for mixed pixel 

wise SVM-FSKhyperspectral data. As a result, the mean 

value of restructuring spectral gradient data is employed as 

the target purpose of the ABC. 

 ݂ሺܱܵܨܯܫ ௔ܹሻ = ݀ܽݎܩܿ݁݌ܵ = ଵ஺×஻×ௌ∑ ∑ ∑ |��ௌைሺ௠,௡,௕ሻ�௕ |ௌ௕=ଵ஻௡=ଵ஺௠=ଵ                                                                                    (17) 

 

Where ܱܵܨ indicates the hyperspectral reduced 

feature dimensional space image sample, ܣ and ܤrepresents the spatial dimensions, and ܵrepresents the 

number of spectral bands. The weight values of the IMFs 

match to somebody of the FA with firefly initial 

population. IMFs weight values are computed through the 

searching flashing behavior of firefly. The weight values 

of IMF are revised in accordance with flashing behavior of 

the each firefly for weight values of IMF in the searching 

space. The present weight values of the IMFs for local HSI 

images and complete HSI image samples weight values 

(IMFs) are compared against each others to choose best 

IMFs weight values to the overall gradient process. The 

current location for each firefly is to calculate the weight 

values of hyperspectral reduced feature dimensional space 

IMF is given as IMFS�Wୟ = ሺimfsowୟଵ, imfsowୟଶ, … . , imfsowD}, where D 

denotes the dimension of IMFs weight values. In GFA, 

each IMF weight values are regarded as Fireflies. Yang 

employed this behavior of fireflies and launched Firefly 

Algorithm in 2010 [24]. Subsequently, most significant 

three characteristics as mentioned above to carry out to 

calculate weight values for IMF function:  

 

a) The entire fireflies are unisex. As a result, IMF weight 

value will be attracted to other IMF weight value not 

considering their sex;  

b) Attractiveness ߚ଴ is relative in accordance with their 

brightness. As a result, for any two flashing IMF weight 

values, the less bright IMF weight value will shift in the 

direction of the brighter IMF weight value. When there 

is no brighter one IMF weight value is found than a 

specific weight value of IMF (firefly), it will travel 

arbitrarily;  

c) The brightness one weight value for IMF (firefly) is 

influenced as a result of fitness function from fሺIMFS�Wୟሻ (16). For a maximization setback, the 

brightness weight value can simply chosen in 

accordance with the fitness function from fሺIMFS�Wୟሻ 
(16). The parameter values of the GFA are given in 

Table-1.  
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Table-1. Parameters of Gaussian firefly algorithm (GFA). 
 

Parameters Values Description 0.2 ߙ Alpha ߚ଴ 0.3 Beta0 0.2 �ߛ Gamma 

Iterations 20 Generations 

 

Social behavior: Random walk is a executed for 

the purpose of selecting each IMF weight value arbitrarily 

based on Brownian motion. With the intention of moving 

the entire IMF weight values, random walk concept is used 

based on a Gaussian distribution that is given as: 

݌  = ݂ሺIMFS�Wୟ|ߤ, ሻߜ = ଵ�√ଶ� ݁−ሺIM୊ୗOWa−ఓሻమ/ଶ�మ      (18) 

 

Where ݁ݎ indicates an error between best IMF 

weight value solution and fitness value of IMF weight 

values (firefly): 

ݎ݁  = ݂ሺ݃௕௘௦௧ሻ − ݂ሺIMFS�Wୟሻ                                      (19) 

ߤ  = Ͳ and ߜ = ͳ, represents the mean and standard 

deviation function correspondingly. Social behavior of 

IMF, weight values (fireflies) is introduced by, 

 IMFS�Wୟ୧ = IMFS�Wୟ୧ + ߙ ∗ ሺͳ − ሻ݌ ∗  ሺሻ         (20)݀݊ܽݎ

 

Where ߙ represents firefly parameter that is 

regulated through adaptive parameter scheme as discussed 

in [17]. In this scheme, GFA depends on the random walk 

each IMF weight firefly IMFS�Wୟ movement is pulled 

towards the best objective function is provided in equation 

(16).  

 

Algorithm 1: Gaussian firefly algorithm (GFA) 

Initialize algorithm parameters: Objective 

function of fሺIMFS�Wୟሻ, from, where IMFS�W =ሺIMFS�Wଵ, . . . . . . . . , IMFS�Wୟሻ୘ 

Create initial population of fireflies as number of weight 

values in IMF 

Describe light intensity of Iୟ at IMFS�Wୟby means 

of fሺIMFS�Wୟሻ, from equation (16) 

While ሺt < MaxGenሻ 
For a =  ͳ to nሺall n firefliesሻ; 
For b = ͳ to nሺall n firefliesሻ 

If ሺIୠ > Iୟ ሻ, move firefly a in the direction of b; end if 

Attractiveness varies with distance r by means of 

Exp[− rʹ] and ߛ� 

Calculate new IMF, weight values solutions and revise 

light intensity; 

End for b; 

End for a; 
Rank the current weight value for IMF and discover the 

current best weight values with the help of (16) 

Define normal distribution 

For c = ͳ,… n all c fireflies 

Draw a random IMF weight value and execute Gaussian 

distribution 

Evaluate new solution (new solution(c)) 

Id new ሺnew solutionሺcሻ  <solutionሺaሻ ሻ&&ሺnew solutionሺcሻ  < last solutionሺcሻሻ 
Move chosen IMF weight in the direction of spectral 

gradient enhancement 

End if 

End for c 
End while; 

Post process results and visualization; 

End procedure; 

Return the best weight values for IMF and its fitness 

value IMFS�W୧ 
The updated weight values of IMFs by means of their 

respective weights to get hold of the new hyperspectral 

data representation that will be employed for 

classification is given as, RHIB = ∑IMFS�wୟ × IMFS�ୟୖ
ୢ=ଵ  

      

(20) 
 

where IMFS�wୟdemonstrates the equivalent weight of 

the IMF, R is the overall number of IMFs employed in 

the reconstruction process, and RHIBindicates the 

reconstructed HSIband. 

Then execute classification technique. 

 

3.4 Spectrland spatial characterization using 

      SVM-FSK 

One Then the gradient level of spectral and 

spatial information for HSI images are determined from 

improved EMD approaches, and then execute probabilistic 

mixed pixel-wise SVM-FSK classification framework. The 

objective function outcome of SVM-FSK is estimated by 

means of HDP-HMM. In order to learn mixed pixel-wise 

SVM-FSK based classification results, approximate the 

HDP- HMM probability value to every spectral gradient 

information from improved EMD to enhance the 

classification outcome. Fuzzy sigmoid kernel function is 

employed as kernel function to SVM classification 

approaches with the intention of enhancing classification 

outcome of HSI images. SVM-FSK approach potentially 

recognizes appropriate and inappropriate features vectors 

through maximization of margin size among feature 

vectors. The exploitation of Fuzzy sigmoid kernel function 

discovers the maximization of margin hyperplane is 

converted in spatial domain version. In view of the fact 

that maximum margin classifiers are well standardized 

techniques and it doesn’t corrupts the performance of 
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classification for infinite dimensional data. Shorten the 

operation of mixed pixel wise SVM-FSK classification 

structure and determining the similarity between variables, 

it employs inner product as metric. 

In these classification approaches, when any 

dependent variables exist, those variables information 

might be lodged through supplementary dimensions, and 

consequently can identify by a mapping [25]. In this paper, 

let ܵܫܫܵܨܩ௜ = ,ଵܫܫܵܨܩܵ} ,ଶܫܫܵܨܩܵ … .  ௡} representܫܫܵܨܩܵ

the spectral gradient outcome from IEMD based GFA 

approach with diminished feature dimensional space. Also 

let ܵܫܫܵܨܩ௜ = ,௜ଵܫܫܵܨܩܵ] … .  ௜ௗ]் which representsܫܫܵܨܩܵ

the spectral gradient outcomes that related with reduced 

feature dimensional images pixel ܵܫܫܵܨܩ௜ א ܲܵܨܩܵ is characterized as a spectral gradient pixel ܲܵܨܩܵ The .ܲܵܨܩܵ א {ͳ,ʹ, … ݊} with indexing of ݊ pixels of ܵܫܫܵܨܩ௜& ܵܤܵܨܩ in which ܵܤܵܨܩ indicates the amount 

of spectral gradient feature space bands. ܵܫܱܵܨܩ ,ଵܫܱܵܨܩܵ]= ,ଶܫܱܵܨܩܵ … . ௜௖ܫܱܵܨܩܵ , … . .  ்[௜௞ܫܱܵܨܩܵ
represent the classification results of SVM-FSK, in which ܥ indicates the quantity of classes ܵܫܱܵܨܩ௜௖ ={+ͳ,−ͳ,݈݉݅݀݀݁ ݈ܿܽݏݏ} for ܿ = ͳ,… . ∑ and ܥ ௜௖ܫܱܵܨܩܵ = ͳ௖ �ሺ. ሻ is indicated as non linear mapping 

function of gradient function, it is carried out in 

accordance with the Cover’s theorem [26], which promises 
elevated classification accuracy rate for linearly separated 

feature vector samples and it is commonly higher 

dimensional feature space ݂ݏ. 
 minW,ξi,ୱv୫ୠ {ଵଶ ||w||ଶ + Ⱦୡ୪∑ ξ୧୧ }                                         (22) 

 

Constrained to the, 

 SGFS�I୧ሺϕ୘ሺjሻW + baሻ ൒ ͳ − ξq                                 (23) ∀i = ͳ,… . n 

 ξ୧ ൒ Ͳ ∀i = ͳ,… . n                                                         (24) 

 

Where ܹ & ܾ݉ݒݏ represents a linear classifier 

for spectral gradient HSIs. Classification outcome of SVM 

approaches are managed by regularization constraint ߚ and 

it is automatically selected by user, the error values of 

feature vectors are indicated by the parameter �௜. The 

result of mixed pixel wise SVM-FSK classification 

framework is approximated depending on probabilistic 

method HDP-HMM is given below, 

 

SGFS�I୧ୡ = { 
 ͳ if pሺSGFS�I୧ୡ = ͳ|SGFSII୧, SGFSTR୪ሻ> SGFS�I୧ୡt)݌ = ͳ|SGFSII୧, SGFSTR୪)∀c୲ ≠ cͲ, otherwise  (25) 

 

In order to enhance the classification accuracy, in 

this attempt employs a kernel function ܭ, 

KሺSGFS�I୧, SGFS�I୧ሻ = ϕሺSGFS�I୧ሻ. ϕ(SGFS�I୨)       (26) 

This kernel function result not enhances 

classification accuracy rate for certain data, to overcome 

these complication, in this paper kernel function are 

approximated depending on fuzzy sigmiod function is 

defined in equation (24) given below: 

 fሺSGFS�Iሻ = sgn∑ SGFS�I୧SGFS�I୧Ƚ୧Ƚ୨୬୧,୨=ଵ                 (27) K(SGFSII୧, SGFSII୨) + svmb 

 

Where the SVM biases value (SVMb) of fuzzy 

kernel can be effortlessly computed from the ߙ௤, it 

happens to be neither Ͳ nor ܥ. This paper extends the 

fundamental ideas of hyberbolic tangent function from 

[27] and it is given as follows ሺʹͷሻ: 
 

K(SGFSII୧, SGFSII୨) = { 
 −ͳ SGFSII୧. SGFSII୨ is low+ͳ SGFSII୧. SGFSII୨ is highm. SGFS�I୧. SGFS�I୧ SGFSII୧. SGFSII୨is medium         (28) 

 

where݉ represents a constant value indicating the 

effectiveness of the sigmoid tract. In the statement of fuzzy 

logic idea, the sigmoid kernel function is defined as 

collection of fuzzy membership functions. Several fuzzy 

membership functions presents; however in this paper only 

concentrated on three triangular function, owing to their 

simplicity. Subsequent to FSK function be continuous, as a 

result the expression (26) can be readily re-written as a 

function of a and γ, as follows: 

 

KሺSGFSII୧, SGFSII୧ሻ =
{   
   −ͳ SGFSII୧. SGFSII୨  ൑ γ − ቀଵୟቁ+ͳ SGFSII୧. SGFSII୨  ൒ γ + ቀଵୟቁʹ(SGFS�I୧. SGFS�I୨ − γ)−aଶ(SGFS�I୧. SGFS�I୨ − γ)|ሺSGFSII୧. SGFSII୨ − γሻ|

      (29) 

 

which is the absolute form of the proposed fuzzy sigmoid 

(fuzzy ݊ܽݐℎ) kernel. In addition, measure the outcome of 

fuzzy sigmoid kernel function through objective function 

for ݈ labeled training samples that is ܶ ௟ܵ = ሺܵܫܫܵܨܩଵ, ,ଵሻܫܱܵܨܩܵ …… ሺ ܵܫܫܵܨܩ௟ ,  .௟ሻܫܱܵܨܩܵ
Based on the above discussed steps, the major function is 

to approximate the probabilistic value for mixed 

pixelsܵܫܫܩ௜ with class label vector SGFS�I୧. This vector 

results can be obtained from HDP-HMM through the 

computing probability function. 

 

SGFS�I୧ୡ = {ͳ if pሺcୗୋ୊ୗII = k|SGFS�I, θሻ> pሺctୗୋ୊ୗII = k|SGFS�I, θሻ∀c୲ ≠ cͲ otherwise                   (30) 

 

 

3.5 Probability estimation using HDP-HMM 
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In this research work, a concept of the Hidden 

Markov Model (HMM) with Hierarchical Dirichlet 

Process (HDP) is used and it is named as HDP-HMM, 

formalism for each spectral gradient input image with 

number of spectral gradient diminished feature space input 

sample states SGFSIIq = {SGFSIIଵ, SGFSIIଶ, … . SGFSII୬}, 
which includes number of output classes SGFS�Iqୡ ={+ͳ,−ͳ,middle class} for c = ͳ,… . C of spectral gradient 

diminished feature space. In order to re-estimate the error 

found by SVM function, value for spectral gradient input 

image computation of backwards process from spectral 

gradient ݐ input samples to ݐ + ͳ input samples. The ሺܨ௧ሻ 
variables point out that there is a Markov changeover at 

spectral gradient ݐ input samples to t+1 input samples with 

diminished feature sample space and ܨ௧  = ͳ, as: 

௧ሺ݅ሻߚ  ≜ :ሺSGFS�I௧+ଵ݌ ܶ|SGFSII௧ = ݅, ௧ܨ = ͳሻ              (31) =∑ߚ௧∗௝ ሺ݆ሻ݌ሺSGFSII௧+ଵ = ݆|SGFSII௧ = ݅ሻ ߚ௧∗ሺ݅ሻ ≜ :ሺSGFS�I௧+ଵ݌ ܶ|SGFSII௧+ଵ = ݅, ௧ܨ = ͳሻ =∑ߚ௧+ௗ்−௧
ௗ=ଵ ሺ݅ሻ ܲሺܦ௧+ଵ = ݀|SGFSII௧+ଵ = ݅ሻ⏞                  ⏞                  ௗ௨௥௔௧௜௢௡ ௢௙ ௣௥௜௢௥ ௧௘௥௠

 ܲሺSGFS�I௧+ଵ:௧+ௗ|SGFSII௧+ଵ = ݅, ܦ = ݀ሻ⏟                          ௅௜௞௘௟௜ℎ௢௢ௗ ௧௘௥௠ ௧ሺ݅ሻߚ  ≜ ͳ 

In order carry out the above step in perfect way, 

divide the number of states into ߚ,ߚ∗ and make use of SGFS�I௧+ଵ to indicateSVM-FSK function estimate results, 

subsequently HDP-HMM utilizes a prior suggestions to 

approximate SVM-FSK function for every spectral 

gradient reduced feature dimensional space sample : 

,ሻߛሺܯܧܩ~ߛ|ߚ  �௝|ߚ, ,ߙሺܲܦ~ߙ ,ܪ|௝ߠ ,ሻߚ � ሻ�௝|Ω~Ω     (32)ߣሺܪ~ߣ ≔ Ͳ, ݏ ≔ ͳ,ݓℎ݈݅݁ � < ∞௦|{�௝}௝=ଵݖ :݋݀ ܶ , ௦−ଵ~�̌௓ೞ−భݖ ሺ�௭ೞሻ SGFS�I௦ܦ~�|௦ܦ  = SGFS�I�+ଵ:� ௦ܦ+ + ͳ |{ߠ௝}௝=ଵ∞ , ௦ݖ , ݀~௦݅݅ܦ � (௭ೞߠ)݂  ≔ � + ݏ ௦ܦ ≔ ݏ + ͳ 

 �௝ represents the initial probability matrix for hyper 

spectral reduced feature samples, zୱ indicates a super-state s for spectral gradient input samples with reduced 

dimensional space and {ω୨}୨=ଵ∞  to indicate the constraint 

values for each one of the ܦ௧+ଵ, with D indicates the {+ͳ,−ͳ,middle class} class. To estimate SVM-FSK, in 

HDP-HMM, calculate backward values for Ⱦ and Ⱦ∗ in 

(30), subsequently posterior probability of input sample 

states SGFSIIq = {SGFSIIଵ, SGFSIIଶ, … . SGFSII୬} in the 

HMM state in accordance with, 

ሺSGFSIIଵ݌  = ݅|SGFS�Iଵ:்ሻ ∝ ሺSGFSIIଵ݌ = ݅ሻ݌ሺSGFS�Iଵ:்|SGFSIIଵ = ݅, ଴ܨ = ͳሻ                                                              (33) = ሺSGFSIIଵ݌ = ݅ሻߚ଴∗ሺ݅ሻ 
 

The posterior probability value forinput sample states SGFSIIq = {SGFSIIଵ, SGFSIIଶ, … . SGFSII୬} in HMM state is 

represented via: 

ଵܦሺ݌  = ݀|SGFS�Iଵ:் , SGFSIIଵ = SGFSII̅̅ ̅̅ ̅̅ ̅̅ ̅ଵ, ଴ܨ = ͳ ሻ = ௣ሺ�భ=ௗሻ௣ሺୗୋ୊ୗOIభ:�|�భ=ௗ,ୗୋ୊ୗIIభ=ୗୋ୊ୗII̅̅ ̅̅ ̅̅ ̅̅ ̅̅ భ,�బ=ଵሻ��ሺୗୋ୊ୗII̅̅ ̅̅ ̅̅ ̅̅ ̅̅ భሻ�బ∗ሺୗୋ୊ୗII̅̅ ̅̅ ̅̅ ̅̅ ̅̅ భሻ                                                                                                        (34) 

 

Reiterate the steps by considering SGFSIIDభ+ଵ 

with initial distribution given by pሺSGFSIIDభ+ଵ =i|SGFSIIଵ = SGFSII̅̅ ̅̅ ̅̅ ̅̅ ̅ଵሻ. On the other hand, it is obvious 

that, when the state space of HMM is huge, some of other 

sequences might be also interested to carry out mixed pixel 

wise probabilistic estimation. The notation in the proposed 

work and their explanation is specified in Table-2,  

 

 

 

 

 

 

 

 

 

Table-2. Notation used in proposed methodology. 

 

Notation Explanation � 
Hyperspectral features 

training samples {݂ݏଵ, …  ௠} Hyperspectral spectral andݏ݂

spatial features samples ܭ:ℱ × ℱ → ℝ Kernel function ܩ א ℝ௠×௠ Gram matrix � Kernel linear map function ℋ௞  
Hillbert kernel space for 

feature samples ݓ 
feature vector weight 

values ܾ א ℝ 
be the bias value for 

feature samples ݊݃ݏሺݑሻ Sigmoid function for 
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features ߤ௄ Mean value for features ∑௄ 
Covariance matrix value 

for features ݅ = ͳ,…݊, ݆ = ͳ,…݉ Feature samples for HSI ℎሺ݂ݏሻ Objective function for 

dimensionality reduction 

of features ܦܨఒሺݓ,  ሻ Fisher discriminantܭ

analysis �ሺFSሻ Gibb’s prior to derive the 
principal component 

analysis ߣ 
is a positive regularization 

parameter 

I 
is the identity operator in 

HSI feature space ℋ௞  ݂ሺݔ, ,ݔଶ݂ሺ׏ ሻ Hyperspectral raw imageݕ  ௫ߤ Information content of HSI ܫܪ ሻ entropyݔሺܪ ሻ Laplacian magnitudeݕ
Fuzzy membership 

function 

௝ܰ is the number of points 

whose gradient is equal to 

j 

௧ܰ௢௧௔௟ denotes the number of 

total points ܰሺݔ,  ߛ slope parameter ߚ scale parameter ߟ ሻ 3-parameter Weibullpdfݕ
location parameter values 

for HSI A and B are the spatial dimensions, S is the number of spectral 

bands IMFS�Wୟ 
Intrinsic mode function 

weight values D 
denotes the dimension of 

IMFs weight values FS� 

hyperspectral reduced 

feature dimensional space 

image sample ݂ሺIMFS�Wୟ|ߤ,  ሻ Gaussian distributionߜ

I 
is the identity operator in 

HSI feature space ℋ௞  ݂ሺݔ, ,ݔଶ݂ሺ׏ ሻ Hyperspectral raw imageݕ  ሻ entropyݔሺܪ ሻ Laplacian magnitudeݕ

 ௫ߤ Information content of HSI ܫܪ
Fuzzy membership 

function 

௝ܰ is the number of points 

whose gradient is equal to 

j 

௧ܰ௢௧௔௟ denotes the number of 

total points ܰሺݔ,  ߛ slope parameter ߚ scale parameter ߟ ሻ 3-parameter Weibullpdfݕ
location parameter values 

for HSI A and B are the spatial dimensions, S is the number of spectral 

bands IMFS�Wୟ 
Intrinsic mode function 

weight values D 
denotes the dimension of 

IMFs weight values FS� 

hyperspectral reduced 

feature dimensional space 

image sample ݂ሺIMFS�Wୟ|ߤ,  ሻ Gaussian distributionߜ

 ݎ݁

error between best IMF 

weight value solution and 

fitness value of IMF 

weight values ߤ = Ͳ and ߜ = ͳ 

ܾe the mean and standard 

deviation function for 

firefly ߙ firefly parameter Iୠ 
Intensity value for IMF 

weight values RHIB 
The updated weight values 

of IMFs R 
Total number of IMFs 

used in the reconstruction, SGFSII୧ Spectral gradient reduced 

feature space input sample SGFS� spectral gradient pixel SGFS�I Spectral gradient reduced 

feature space output SGFS�I୧ୡ= {+ͳ,−ͳ,middle class} Number of the classes for 

input sample svmb 
SVM Bias values for 

pixels Ⱦୡ୪ Regularization parameters 

for classification ξ୧ error values of feature 

vectors 
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m 

constant value 

representing the 

effectiveness of the 

sigmoid tract γ − ଵୟ whereγ + ଵୟ Fuzzy membership limits KሺSGFSII୧, SGFSII୧ሻ Fuzzy sigmoid 

(fuzzytanh) kernel. 

l Labeled training samples SGFS�Iqୡ = {+ͳ,−ͳ,mc} Spectral gradient output 

image pixels classes ݐ to ݐ + ͳ 
Reduced feature 

HSIsamples ܨ௧ Markov transition at 

spectral gradient ݐ input 

samples ߚ,ߚ∗ States of HMM for each 

hyper spectral reduced 

feature samples ܲሺܦ௧+ଵ = ݀|SGFSII௧+ଵ = ݅ሻ  ݉ݎ݁ݐݎ݋݅ݎ݌݂݋݊݋݅ݐܽݎݑ݀

for hyper spectral reduced 

feature samples ܲሺSGFS�I௧+ଵ:௧+ௗ|SGFSII௧+ଵ= ݅, ܦ = ݀ሻ ݈݅݁݇݅ܮℎ݉ݎ݁ݐ݀݋݋ 

�௝ Initial probability matrix 

for hyper spectral reduced 

feature samples 

zୱ as a super-state s for 

spectral gradient input 

samples with reduced 

dimensional space {ω୨}୨=ଵ∞  
to represent the parameters 

value for each one of the ܦ௧+ଵ D 

denotes the {+ͳ, −ͳ,middle class}cla

ss 

 

4. EXPERIMENTATION RESULTS 

Experimental results are provided for three 

hyperspectral data sets which are commonly used to 

evaluate the performance of hyperspectral classification 

algorithms, namely, the Indian Pine data in Table-3. The 

Indian Pine data set, which was taken over Indiana in 

1992, consists of ͳͶͷ ×  ͳͶͷ pixels and 220 spectral 

bands. The spectral bands containing atmospheric noise 

and water absorption are removed, resulting in 200 bands. 

The spectral range of the data is Ͳ.Ͷ– ʹ.ͷ ݉ߤ, and the 

spatial resolution is 20 m. Although the original ground-

truth data contain 16 classes, the classes with a small 

number of samples are usually ignored, and the nine 

classes with a high number of samples. The Indian Pine 

data set is one of the most commonly used HSI. It is 

regarded to be a challenging data set, which is difficult to 

classify, because the spectral signatures of some classes 

are very similar and the pixels in the image are heavily 

mixed. Figure-2. Illustrates the input image samples from 

Indian Pine data set. After the noise values are added to 

input image samples is also illustrated in Figure-3. 

 

 
 

Figure-2. The input image samples from Indian 

Pine data set. 

 

 
 

Figure-3. Noise incorporated input samples 

from Indian Pine data set. 

 

 

 

 

 

 

 

 

 

Table-3. Indian Pine data. 
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Class No. of samples 

Corn-No Till 1434 

Corn-Min Till 834 

Grass/Pasture 497 

Grass/Trees 747 

Hay-Windrowed 489 

Soybean-No Till 968 

Soybean-Min Till 2468 

Soybean-Clean 614 

Woods 1294 

Alfalfa 54 

Building 

/Grass/Trees/Drives 
380 

Corn 234 

Grass/Pasture-Mowed 26 

Oats 20 

Stone-Steel-Towers 95 

Wheat 212 

 

 
 

Figure-4. Shape detection using hybrid canny edge 

detection and 

WPDF from Indian Pine data set. 

 

The shape detection results using hybrid canny 

edge detection and WPDF for Indian Pine data set samples 

are shown in Figure-4. This Table-4 shows the overall 

accuracy of results for the original data representation as 

well as the EMD and the proposed EMD with spectral 

enhancement (denoted as EMD-SE) with PSO compare 

with existing EMD-SEGA. 

 

Table-4. Indian Pine data results for spectral gradient. 
 

Images 

Accuracy (%) 

EMD EMD-GA IEMD-PSO 
RBF-PCA- 

IEMD-ABC 

EMD-

SEGFA 

1 91.5 93.45 95.42 96.8 97.23 

2 90.5 93.84 95.51 97.15 97.89 

3 90.25 93.95 95.64 97.45 98.14 

4 90.8 94.12 95.87 97.89 98.36 

5 90.5 94.25 96.12 97.98 98.94 

 

 
 

Figure-5. Indian Pine data results for spectral gradient. 

Figure-5 shows the overall accuracy of results for 

the original Indian Pine data representation as well as the 

EMD and the proposed EMD with spectral enhancement 

and GFA is denoted as (EMD-SEGFA) compare with 

existing methods such as EMD-SEPSO, EMD-SEGA and 

EMD. It shows that proposed EMD-SEGFA spectral 

enhancement achieves higher 8.96 % accuracy than earlier 

EMD-SEPSO methods, since the proposed work the shape 

detection is performed based on the Hybrid canny edge 

detection and estimated using WPDF, which produces 

exact classification results for all HSI images samples. 
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Tab1e-5. Indian Pine data classification results. 
 

Images 

Mean (μሻ 
SVM-RBF 

SVM-

FSK 

RBF-PCA-

SVM-FSK 

SVM-FSK after 

edge detection 

1 92.56 93.24 96.95 97.36 

2 92.13 94.41 96.89 97.13 

3 93.56 94.64 96.63 97.86 

4 93.39 95. 22 97.23 98.21 

5 91.9 95.8 97.58 98.36 

Images 

Standard deviation (σሻ 
SVM-RBF 

SVM-

FSK 

RBF-PCA-

SVM-FSK 

SVM-FSK after 

edge detection 

1 0.97 0.78 0.608 0.582 

2 0.964 0.77 0.61 0.56 

3 0.958 0.71 0.617 0.523 

4 0.95 0.72 0.604 0.5128 

5 0.978 0.74 0.608 0.5085 

 

 
 

Figure-6. Mean value results for classification results. 

 

The Figure-6 classification performances are 

evaluated using mean function. The SVM classification 

with RBF kernel and SVM classification with Fuzzy 

sigmoid function of before and after edge detection [27, 

28]. A classification result with respect to highest mean 

values shows the better accuracy results. It shows that 

proposed SVM-FSK (Support vector machine - Fuzzy 

Sigmoid Kernel) after the edge detection have achieves 

higher mean values when compare to before edge 

detection of the SVM-FSK and SVM-RBF (Support vector 

machine - Radial basis function) methods. 

 
 

Figure-7. Standard deviation for classification results. 

 

The Figure-7 classification performances are 

evaluated using standard deviation function. The SVM 

classification with RBF kernel and SVM classification 

with Fuzzy sigmoid function of before and after edge 

detection. A classification result with respect to lowest 

standard deviation shows the better classification accuracy 

results. It shows that proposed SVM-FSK (Support Vector 

Machine-Fuzzy Sigmoid Kernel) after edge detection have 

less standard deviation than SVM-RBF (Support vector 

machine - Radial basis function) and before edge detection 

of SVM-FSK method, is illustrated in Figure-7.  
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CONCLUSIONS 

In this paper, the complication of dimensionality 

reduction and shape detection for HSI is taken into 

consideration in order to enhance classification accuracy. 

With this aim, this work presents Support Vetor Machine 

(SVM) - Fuzzy Sigmoid Kernel (FSK) framework in the 

context of classification of hyperspectral data. Specifically, 

EMD-based scheme with spectral gradient enhancement 

has been formulated for HSIclassification. EMD is 

employed for the purpose of decomposing hyperspectral 

bands into their IMFs. GFA-based optimization is then 

employed for the purpose of increasing the spectral 

gradient of the EMD-based representation by means of 

obtaining the weights of IMFs in an attempt to optimize 

the spectral gradient. At the same time, KFDA is used to 

reduce the data dimensionality, suppresses unwanted or 

interfering spectral signatures, and identifies the 

occurrence of a spectral signature of interest. The 

fundamental idea is to project each pixel vector onto a 

fisher discriminant subspace with kernel values. In this 

work, hybrid canny edge detection operator and the Fuzzy 

Entropy theory has been established to identify the shape 

of each object in HSI samples. The edge detection 

outcome is estimated based on the Weibull Probability 

Density Function (WPDF). SVM-FSK classifier is 

proposed for the purpose of classification of mixed pixels 

wise spectral spatial data. The SVM-FSK results is 

estimated in accordance with the HDP-HMM for mixed 

pixelwise characterization of complete image and a set of 

previously derived class combination maps, 

correspondingly. The proposed approach SVM-FSK with 

HDP-HMM, which intends to characterize mixed pixels in 

the scene and assumes that these pixels are normally 

mixed by only a few constituents, offers certain distinctive 

features with regards to other existing schemes. 

Experimental results confirm that the proposed SVM-FSK 

approach provides a significant increase in class 

separability for both synthetic and real hyperspectral 

scenes of various classification methods. The approach is 

applicable to both spectrally pure as well as mixed pixels. 

Further developments of this work include a 

comprehensive research of the influence of the KFDA 

algorithm used to enforce investigation of the possibility of 

including contextual spatial information within the SVM-

FSK framework. The SVM is computationally less 

demanding for small training sets, so which is solved by 

using applying other classification methods such as Fuzzy 

Neural Network (FNN), Extreme Learning Machine 

(ELM) and their types, online dictionary learning schemes, 

etc to reduce the time complexity during classification 

process.  
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