
 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7024

PERFORMANCE IMPROVEMENT IN DATA SEARCHING AND SORTING
USING MULTI-CORE

Venkata Siva Prasad Ch., Ravi S. and Karthikeyan V.

Department of Electronics & Communication Engineering, Dr.M.G.R. Educational and Research Institute University, Chennai, India
E-Mail: siva6677@gmail.com

ABSTRACT

Recently multi-core processors have become more popular due to performance, and efficient processing of
multiple tasks simultaneously using concurrent and parallel languages like openMP programming The design of parallel
algorithm and performance measurement is a major issue on multi-core environment and multi-core modules used in
Searching and sorting of data in unsorted database. Multi-core based searching and sorting (of serial and parallel
algorithms) can reduce the execution time considerably compared to single core. In the proposed work searching and
sorting is done for numbers as well as words in a large database with comparison of both single and multicore
implementation. Multi-core offers explicit support for executing multiple threads in parallel and thus reduces the time.
The results for number searching and sorting, word searching and sorting is presented and also speed up achieved using
multi-core over single core is reported. Hardware implementation is done on Gizmo board (dual core).

Keywords: searching, sorting, AMD, multi-core, openMP, parallel processor.

INTRODUCTION

Advancement in technology demands processing
of large data (ex: bio-informatics, web applications etc.)
reaching peta bytes. Large databases are common in
Telecom fields, social media sites, medical filed etc. In
large databases the issues are not only with the volume of
data but on the database speed and on the hardware
associated with it. Also, the method must be suited for
various data types like text, audio, video and image.
Sorting is a process of arranging the list of items in a
order. The existing methods for sorting have a problem of
quadratic time complexity when the size of the data is very
huge and this requires high amount of memory and stand-
alone resources. Existing algorithms for searching includes
serial, binary searching, etc. The performance of a
searching algorithm is evaluated using the following
metrics.

(i) Average, worst case and best possible time.
The execution time for searching and sorting is reduced
when workload is divided and given to multithreads. i.e.
use of multi-cores. The focus of this paper is on efficiency
improvements that are specific to large database searching
and sorting. We use serial and parallel algorithms for
sorting and searching as a test bed to explore
parallelization schemes that may possibly apply without
significant changes to other divide-and conquer methods
the parallelization is well-studied in theory is known of
how to implement parallelization in scheduling of the
listed data in multi-core on mainstream architectures (such
as standalone), by means of mainstream shared memory.
The paper is organized as follows: Section 2 presents a
brief introduction to Multi-core systems; section 3 gives
the concept of data searching and sorting using openMP.
Section 4 shows the hardware details, and implementation

of algorithms for searching and sorting for numbers and
words and in section 5 comparisons between single and
multi-core performance is presented along with the
speedup achieved.

MULTICORE SYSTEMS AND OPENMP

The tasks can be dynamically scheduled for
execution based on the mutual dependencies and on the
computational resources available. The dynamic runtime
system efficiently schedules the implemented kernels
across the processing units and ensures the data
dependencies are not violated. In the central processing
unit (CPU), independent processing units are called cores
and the multi-core processor is one which utilizes more
than one core. Multi-core processors plays a vital role in
parallel processing as the cores share workload and
perform load balancing in the running time. The core can
be with one thread or more thread each. The software
running in the processor is a key factor in deciding the
performance of multi-core processor. Since workload is
shared equally among the processors, execution time is
minimized and results in better performance. The main
advantage of multi-core systems over single core systems
is time consumption. But there are some drawbacks in
multi-core processor. For example in a sorting application
the task is divided into number of threads and each thread
is running in separate cores. In this case for each thread
there is a need for separate set of computational resources.
Alternately, single core systems are optimal over the
multi-core systems. Additionally, the amount of heat
radiation can increase with the number of cores. The above
mentioned drawbacks need to be considered as a trade off
to faster execution time.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7025

Multiple cores to remove deadlock
Multi-core module can overcome deadlock

situations using scheduling types. Deadlock can occur due
to process running in single core and use of more cores in
an optimal manner can relieve
Deadlock can occur in

 Mutual exclusion: only one process at a time can use

a resource.
 Hold and wait: A process holding at least one

resource which is waiting to acquire additional
resources held by other processes

 No pre-emption: A resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a
resource that is held by P2, …, Pn–1 is waiting for a
resource that is held by Pn, and Pn is waiting for a
resource that is held by P0.

 The Deadlock due to circular wait is shown in
Figure-1(a), along with the process dependency shown in
Table-1 from Table-1, the wait among the processes PA, PB,

PC and PD are (PA, PB, PC, PD,PA). to overcome the deadlock,
a new core to handle process PC alternately (instead of PB)
is use as shown in Figure-1(b) along with the new
dependency Table-2.

Figure-1(a).

Table-1.

Process Parent Child

A D B

B A C

C B D

D C A

Figure 1(b).

Table-2.

Process Parent Child

A D E(NEW CORE)

E A C

C E D

D C A

THREAD AFFINITY

The Thread affinity has been studied in shared
memory with various views introduced new affinity level
system calls. AMD and INTEL compilers are allow
programmer to control thread binding by following
modules. Thread affinity cache between processor to
processor can have a dramatic effect on the application
speed. Thread affinity restricts execution of certain threads
(virtual execution units) to a subset of the physical
processing units in a multiprocessor.

Thread affinity is supported on Windows OS
systems and versions of Linux OS systems that have
kernel support for thread affinity. The compiler’s OpenMP
runtime library has the ability to bind OpenMP threads to
physical processing units.
The total number of processing elements on the machine is
referred to as the number of OS thread contexts.
Each processing element is referred to as an Operating
System processor, or OS proc.
Each OS processor has a unique integer identifier
associated with it, called an OS proc ID.

The term package refers to a single or multi-core processor
chip.

low affinity - when no state is retained in the
core’s cache at each new scheduling data

high affinity - when the benchmark’s state is
almost entirely retained in the cache at each new
scheduling data.

PA

PB

PC

PD

New core

PE

PA

PB

PC

PD

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7026

OpenMP
 The speed of execution of a task will be improved
if all the available cores are utilized as per load that is task
is divided and allocated to number of cores and this is the
concept called multithreading. OpenMP has been very
successful in exploiting structured parallelism in
applications. A thread is a single sequential flow of control
within a program. OpenMP simplifies parallel application
development by hiding many of the details of thread
management and communication. It is suitable for
different processor architectures and a number of operating
systems. In openMP based multithreading concept the
tasks is divided and send to various threads that
simultaneously. Each thread executes the allotted sub tasks
individually. Once all the slave threads have completed its
execution they are joined. OpenMP is easy to program and
mostly used for parallelizing the serial and parallel
programs. The master thread assigns tasks unto worker
threads. Afterwards, they execute the task in parallel using
the multiple cores of a processor. The model of openMP is
shown in Figure-2.

 The OpenMP supports loop level scheduling. This

defines how loop iterations are assigned to each
participating thread. Those scheduling modules have
run in the single core and multi core processor based
applications Scheduling types include:

 Static: Each thread is assigned a chunk of
iterations in fixed fashion (round robin).

Guided: Given Iterations are divided into pieces
that successively decrease exponentially, with chunk being
the smallest size. This is a form of load balancing.

Dynamic: Each thread is initialized with a chunk
of threads, then as each thread completes its iterations, it
gets assigned the next set of iterations.

Run-time: Scheduling is deferred until run time.
The schedule type and chunk size can be chosen by setting
the environment variable OMP_SCHEDULE.

Figure-2.

Creating an OpenMP program with scheduling
 The OpenMP’s directives for creating the program

and speceify which instructions to execute in parallel
and how to distribute them among the threads in the
processing time.

 The first and second step in creating parallel program
using OpenMP from a serial threading (single core) is
to identify the parallelism it contains and then to
express, using OpenMP, the parallelism that has been
identified.

 Data can be search and public or private in the
OpenMP memory model.

 When that data is private it is visible to one thread
only, when data is public it is global and visible to all
threads.

 OpenMP divides tasks into threads; a thread is the
smallest unit of a processing that can be scheduled by
an operating system. The master thread assigns tasks
unto worker threads. Afterwards, they execute the
task in parallel using the multiple cores of a processor.

OpenMP API’s
In this paper searching and sorting applications on
multicore using openMP is done Those modules of API’s
are used in the OpenMP Module. The openMP API’s are
shown in the Listed Table-3 and Table-4.

Searching

Table-3.

#pragma omp
parallel

calls the default number of
threads to execute the program

#pragma omp for
allocate the number of

iterations to each thread

pragma omp for
firstprivate(b, f1)

will make b and f1 as private
to each thread with initial

values

omp_get_wtime() it will get that moment of time

DATA 1

QUEUE

THREAD 1

THREAD 2

 THREAD 3

 THREAD 4

DATA 6

DATA 5

DATA 4

DATA 3

DATA 2

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7027

Sorting
Table-4.

IMPLEMENTATION AND PERFORMANCE
ANALYSIS
That programming for both serial threading (single-core)
and parallel threading (Multi-core) module is implemented
on the Linux operating system (OS). The flowchart for
serial process is shown in Figure-3. The searching/sorting
is done for numeric and alphabets and the execution time
is calculated for both single and multi-core.

Thread handling in running time

The thread handling in running process to
compile the input from the multithread with openMP
processor has follow the Example of the data reallocation
on the multithread to threads in running of the total data
has been shared on the requiring the data limit.

FOR EXAMPLE:

 N=1000 and num of threads =4
Then
→ N/num=250

Out of 1000 elements each thread (0, 1, 2, 3) will
execute 250 elements each, thereby the execution time is
reduced its shown in Table-5. The flow chart for parallel
implementation is shown in Figure-4.

Figure-3 Flow chart for serial process.

#pragma omp parallel
Calls the default number of threads to execute the

program

#pragma omp sections

It tells the compiler that code is divided into sections
which will start with “#pragma omp section”

statement. Sections are executed by different threads
simultaneously and only 1 thread is allowed per

thread.

omp_get_wtime() It will get that moment of time

If given number/word get
matched to the input of

Element found

Select The All Values In Given
data

Start

Total time for serial execution

Enter the number/word to be
searched and sorting

Read input from the user words
/numbers /array element to be

searched

Searching/sorting for the given input
file from user

Stop

Calculating the time of
execution

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7028

Table-5.

Thread 0 Thread 1 Thread 2 Thread 3

X=0*250+1 = 1
P1=1*250 = 250

X=1*250+1=251
P2=2*250 = 500

X=2*250+1=501
P3=3*250 = 750

X=3*250+1=751
P4=4*250 = 1000

Figure-4. Flow chart for parallel process.

Thread 1

Stop

Calculating the time of
execution

Thread 3

Create a bundle of threads with given
data

Start

Enter the number/word to be searched
and sorting

Total time for parallel execution

Assign a thread in
“multi-thread”

Read input from the user like
numbers/words/arrays

Select all values and manage the scheduling
threads

Call the thread allocation in the
total array of search/sorting

Determine core threads according to the main
thread attributes

Thread nThread 2

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7029

Experimental setup
The AMD Embedded G-Series SOC platform is a

high-performance, low-power System-on-Chip (SOC)
design, featured with enterprise-class error-correction code
(ECC) memory support, The AMD G-Series SOC achieves
superior performance per watt in the low-power x 86
microprocessor classes of products when running multiple
industry standard benchmarks. This helps enable the
delivery of an exceptional HD multimedia experience and
provides a heterogeneous computing platform for parallel
processing. AMD Embedded G-Series SOCs build on the
strength of the AMD G-Series APU architecture to provide

Amdahl’s law specifies the maximum speed-up that can be
expected by parallelizing portions of a serial program.
Essentially, it states that the maximum speed up (S) of a
program is

S = 1/ (1-F) + (F / N)
where, F is the fraction of the total serial execution time
taken by the portion of code that can be parallelized and N
is the number of processors over which the parallel portion
of the code runs. The metric that have been used to
evaluate the performance of the parallel algorithm is the
speedup. It is defined as Sp = T1 / TP

Figure-5. AMD GIZMO board.

an array of performance and power options and enhanced
multimedia capabilities via a single scalable architecture
This improvement is made possible by the seamless single
chip integration of CPU, GPU and I/O controller.

The explorer board: A companion board for
Gizmo, the Explorer expansion I/O board allows for even
greater experimentation and exploration opportunities.
This two-layer board connects to Gizmo via the low-speed
connector and provides an alpha-numeric keypad, a micro-
display, and a sea of holes for prototyping and
customization.
Performance improvement

The Architecture based Multi-core in-memory
databases for modern machines can support extraordinarily
high transaction rates for online transaction processing
workloads. The amount of performance benefit an
application will realize by using OpenMP depends entirely
on the extent to which it can be parallelized.

A loop for checking the number of numbers in
database is written. Then setting back pointer to beginning
of the file, the parallel regions starts for parallel execution
and appropriate constructor (For example 2 threads for
dual core). Scanning and storing the numbers in an array
from is done the file. The program is divided in two
sections, one section is executed by 1 thread and second
section is executed by another thread simultaneously. Each
thread will search their sections for number. If anyone
thread finds that number, immediately convergence is
achieved and they both stop(both threads will be
monitoring “Flag” continuously if any one thread defects
number then flag will be set 0), Output statement will
written to the output file(("fredlog.txt "), with time taken
for the execution in the log file(fredlog.txt).

Alternately the same program serially, and we
need to set the” MULTICORE” as “0” can be executed. It
executes all the same but with only one core or thread for
sorting.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7030

EXPERIMENTAL RESULTS AND DISCUSSIONS

There are two version of algorithm: serial and
parallel. The programs are executed on AMD
Gizmo@Core2-Duo processor machine. We analyzed the
performance using results and finally derived the
conclusions. The linux compiler fopenmp under
compilations and executions. The linux C++ compiler
supports multithreaded parallelism with /Qopenmp flag. In
this experiment the execution times of both the serial
(single core) and parallel (multicore) algorithms have been
recorded to measure the performance (speedup) of parallel
algorithm against serial.

In dual-core processing the program is divided
into two sections or threads in dual core processor, one
section is executed by 1 thread and another section is
executed by another thread simultaneously. Each thread
will sort their section’s names and store in another array.
Once both threads complete their work (# pragma omp
barrier). The outputs are merged .The same program can
be executed serially, for that we need to set the”
MULTICORE” as “1”. It executes all the same but there
will only two core or two threads will sort whole database.
The results obtained for number searching is presented in
Table-4 and Figure-6. The results obtained for number
searching is presented in Table-5 and Figure-7. The results
obtained for number searching is presented in Table-6 and
Figure-8. The results obtained for number searching is
presented in Table-7 and Figure-9. The result has shown in
milli seconds (ms). The overall improvement achieved
using multicore over single core in searching and sorting is
presented in Figure-10.

Table-6. Results of number searching.

Number to
search

Single core
(Ms)

Multi core (Ms)

40 0.06631 0.0013

50 0.06747 0.0025

60 0.06852 0.0031

70 0.06931 0.0040

80 0.06986 0.0047

90 0.07008 0.0051

Figure-6. Number searching.

Table-7. Results of number sorting.

Array size
Single core

(Ms)
Multi core (Ms)

10000 1.1208 0.4179

15000 2.0751 0.8754

25000 5.3759 2.4767

30000 8.9471 3.5523

50000 17.613 8.3173

Figure-7. Number sorting.

Table-8. Results of word searching.

Query word
Single core

(Ms)
Multi core

(Ms)

Time 0.001863 0.00036

Apple 0.002014 0.00039

University 0.002501 0.00042

Mango 0.001963 0.00038

Communication 0.002795 0.00045

Electronics 0.001972 0.00051

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7031

Figure-8. Word searching.

Table-9. Results of word sorting.

Array size Single core (Ms) Multi core (Ms)

9902 4.7731 2.021

9915 4.8585 2.037

9978 4.8971 2.108

9997 5.0374 2.284

9821 4.9484 1.986

Figure-9. Word sorting.

Figure-10. Speedup achieved using Multi-core.

CONCLUSIONS AND FUTURE ENHANCEMENT
In this paper, serial and parallel implementation

of algorithm on a Dual core processor for data mining is
presented The maximum speedup achieved with two cores
in searching is 15 % and 2.4 % in sorting. This is almost
twice the speed of the execution with serial algorithm
compare with the parallel module (multi-core).This clearly
indicates that as the number of cores increase, the
computation time taken by a parallelism is also less. This
analysis is done on a small data set. As the size of the data
mining becomes large and as the number of cores increase,
parallel programs written with OpenMP gives much better
performance. The applications written in OpenMP can be
further analysed. The implemented algorithm on core
processor in a serial manner with standard datasets using
different support counts on a dual core processor using
OpenMP is in progress. From our proposed work we can
ensure that parallel results would be better than serial once.
Our aim of measuring the serial and parallel performance
of a multi-core core processor with respect to time and
performance comparison between them would get satisfied
in future, using alternative constraints handling method,
parallel algorithm and high performance computing
paradigm a better speed up can be achieved

RERFERNCE

Sheela Kathavate1, N.K. Srinath. 2014. Efficiency of
Parallel Algorithms on Multi CoreSystems Using
OpenMP. International Journal of Advanced Research in
Computer and Communication Engineering. 3(10).

M Rajasekhara Babu, M Khalid, Sachin Soni. 2011.
Performance Analysis of Counting Sort Algorithm using
various Parallel Programming Models. International
Journal of Computer Science and Information
Technologies. 2(5): 2284-2287.

Sanjay Kumar Sharma and Kusum Gupta. 2012.
Performance Analysis of Parallel Algorithms on Multi-
core System using OpenMP. International Journal of
Computer Science, Engineering Information Technology.
2(5): 55-64 Journal of Research and Industry. 1(1): 30-35.

Chao-Chin Wu, Lien Fu Lai, Chao Tung Yang, Po Hsun
Chiu. 2012. Using Hybrid MPI and OpenMP programming
to optimize communication in parallel loop self-scheduling
scheme for multicore PC clusters. The Journal of
Supercomputing. 60(1): 31-61.

A. J. Umbarkar, M. S. Joshi, P. D. Sheth. 2015. OpenMP
Dual Population Genetic Algorithm for Solving
Constrained Optimization Problems. I.J. Information
Engineering and Electronic Business. 1, 59-65.

 VOL. 10, NO. 16, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7032

Nilesh.S.Korde1, Prof.Shailendra.W.Shende2 IOSR. 2014.
Parallel Implementation of Apriori Algorithm. Journal of
Computer Science (IOSR-JCE) e-ISSN: 2278-0661, pp.
01-04.

Jiawei Han and MichelineKamber. 2006. Data Mining
concepts and Techniques, 2nd Edn. Morgan Kaufmann
Publishers, San Francisco.

Karthikeyan V and Ravi S. 2014. Efficient scheduler and
multi threading for resource aware embedded system.
Journal of Theoretical and Applied information
technology. 67(3): 755-762.

Lan Xiaowen. 2014. Research on Multicore PC Parallel
computation based on openMP”, International Journal of
Multimedia and Ubiquitous Engineering. 9(7): 131-140.

PranavKulkarni and Sumit Pathare. 2014. Performance
Analysis of Parallel Algorithm over Sequential using
OpenMP. IOSR Journal of Computer Engineering. 16(2):
58-62.

Wang L, Zhou L, Lu J and Yip J. 2009. An order-clique
based approach for mining maximal collocations. Journal
of Information Science. 179(19): 3370-3382.

Vaidehi M and T.R.Gopalakrishnan Nair. 2008. Multicore
Applications in Real time systems. Journal of Research
and Industry. 1(1): 30-35.

ZaidAbdi Alkareem Alyasseri, Kadhim Al-Attar and
Mazin Nasser. 2014. Parallelize Bubble Sort Algorithm
Using OpenMP. International Journal of Advanced
Research in Computer Science and Software Engineering.
4(1): 103-110

