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ABSTRACT 
 A neural networks based direct inverse controller for Pressure Process Rig® system is presented, including with 
the performance analysis using an open-loop and a closed loop system. In order to enhance the performance characteristics 
of this direct inverse controller, a Fine-Tuning method is proposed. Experimental results show that the open-loop system 
shows lower MSE compare with that of the closed-loop system, and the Fine-Tuned NN-DIC method always performed 
better with lower MSE compare with that of the normal NN-DIC method.    
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INTRODUCTION 

The dynamic behavior of a time-dependent 
nonlinear system is in general could not be accurately 
modeled by static input-output mapping strategy.  In order 
to deal with this problem, the control system of a time-
dependent nonlinear system should design to be adaptive, 
robust and flexible. The conventional proportional-
integral-derivative (PID) controllers are widely used in 
industry due to their simple control structure, ease of 
design and low cost (Shin et al. 2012), (Rodriques et al. 
2012), (Guzinski et al. 2013), (Holmes et al. 2012), 
however, the PID controller could not provide a perfect 
control performance if the controlled system is highly 
nonlinear. As the consequence, PID controller could not 
guarantee that the system would work with the same level 
of accuracy in the entire operating range.  

Considerable works has been reported, recently, 
concerning the use of artificial neural networks algorithm 
as a control system for a time-dependent nonlinear system. 
Artificial neural networks is a machine that is designed to 
model the performance of the brain on its ability to solve a 
particular task of interest based on a pattern recognition 
scheme. A neural networks is a massive parallel 
distributed processor made up of a simple processing 
neuron for memorizing the knowledge and making it 
available after training. The procedure used to perform the 
learning process is called the learning algorithm. The main 
objective of this mechanism is to modify the connection 
weights between neurons in the networks in an orderly 
fashion to attain the mapping capability of a set of input 
patterns onto a corresponding set of output patterns. A 
simple but powerful neural networks is a multi-layer 
perceptron (MLP) with one hidden layer, trained by using 
a back-propagation learning mechanism for updating the 
neural networks parameters.  

In recent years, there has been a significant 
increase in the number of control system methods that are 
based on nonlinear concepts. The nonlinear inverse model 
based control is one of such methods, which is dependent 
on the availability of the inverse of the plant model. As the 
neural networks have the ability to model any nonlinear 

system, including their inverse, their use as a controller is 
promising.  

In this paper, the design and evaluation of a 
neural network based inverse controller to a Pressure 
Process Rig® system, or PPR® in short, is presented. 
Pressure Process Rig® system is one of the nonlinear 
systems that the neural network shall be implemented and 
its control performance could be evaluated for future 
development of an adaptive and robust controller system 
based on Neural Networks. Especially, this performance 
analysis is very important for the development of the 
error-based direct inverse controller with disturbance 
rejection capability. 

This paper is organized as follows. Section II 
presents description of the Pressure Process Rig® as a 
system plant. In addition, the data collection and its 
processing are also described. Section III discusses the 
design and the development of the neural networks based 
controller in detail, including with the system 
identification of the plant, as the strong system 
identification capabilities of a neural networks could be 
extended and utilized to design a better nonlinear 
controller. The validity of the design procedure and the 
robustness of the proposed controller are verified by 
means of a computation simulations and experimental 
analysis, which is presented in Section IV, follows by the 
conclusion that is presented in Section V. 
 
The Pressure Process Rig® System 

Pressure Process Rig® control that was used in 
this experiment is a laboratory model developed by 
Feedback Instrument Ltd. The schematic diagram of the 
Pressure Process Rig control is borrowed from the manual 
provided from the manufacture that illustrated in Figure 1. 
For more specific information regarding the system, please 
refer to the available manual book (Feedback, 2006). 
When the system is in the operation mode, a mini 
compressor supplied a gas through a pipeline into the 
orifice of the system, and a control valve is put in this line 
for controlling the Pout outlet pressure. A control signal is 
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inputted into this control valve and can be adjusted in 
order to have a determined Pout outlet pressure.  

The Pout outlet pressure measurement is 
calculated by a differential pressure transmitter that was 
embedded in the system. The PPR® system is connected to 
a PC computer through a Process Interface (Feedback 38-
200) with a two signal conditioning subsystems, i.e., V/I 
converter and I/V converter, respectively, and a Data 
Acquisition Card NI-PCE-6024E. The supervisory 
adaptive controller is programmed in C-MEX language, 
compiled into the hexa-code, and can be implemented in 
SIMULINK environment. The measured data can be 
obtained through the Data Acquisition card for every 0.45 
seconds.  

For the purpose of system identification of the 
PPR®, the data input–output is collected through a multi 
sinusoidal signal with a range of 0%-85% from its 
maximum range, following the defined equation as 

 
                           (1) 

                                      
where e(k) is a random signal within interval of [0, 0.5]. 
Figure 2 shows the system input-output data generated by 
the PPR® system in an open loop mode. It is clearly shown 
that the identification database covered the predefined 
operating points of the PPR® system, by including the low, 
the medium, and the top of the operating region of the 
system (Subiantoro et.al. 2013). As the sampling time is 
determined to be 0.45 second, a total of 5000 samples are 
collected and can be directly used for the experiments. 
 
Neural Networks Based Controller Design 

The nonlinear inverse model based control 
strategy is one of the promising methods within various 
nonlinear concepts that are being developed recently. As 
the neural networks have the ability to model any 
nonlinear system, direct inverse neural networks controller 
is one of the several types of neuro-controllers which have 
been used due to its simplicity. Neural networks has been 
studied as one of the most accurate system identification 
for nonlinear dynamical system (Narendra et al. 1990).  

The application of a neural networks as a system 
identification and a controller of a nonlinear process have 
been used such as in greenhouse temperature (Frausto et 
al. (2004), thermal dynamic of pulsating heat pipe (Lee et 
al. (2009), and other industrial applications (Valamarthy et 
al. 2009), (Sastry et al. 1994). 
 The utilization of a direct inverse system model is 
done by cascading the inverse neural controller with the 
controlled plant. The cascaded system then provided an 
identity mapping between the signal reference or the 
desired response of the system and the output of the plant 
or the controlled plant response, where the neural 
networks acts directly as the neural controller. 
 

 
Figure-1. Pressure Process Rig® control. 

 

 
Figure-2. Input and output data provided from open-loop 

generated identification data of the plant. 
 

 
 

Figure-3. Direct Inverse Control system in cascading with 
the plant (a) open-loop system, (b) closed-loop system. 

 
Block diagram of an open-loop direct inverse 

model is schematically depicted in Figure-3a. The 
advantage of the direct inverse neural controller lied on its 
capability of using the most powerful characteristics of 
neural networks learning mechanism. However, the plant 
may lose robustness at the beginning of the control 
process, since the initial output depends directly by the 
semi-randomly initial weight matrix determination of the 
neural networks. As can be seen clearly seen from Figure 
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3a, the direct inverse neural controller relies on the fidelity 
of the inverse model used as the controller. 

Generally, serious problem may arise, due to lack 
of the neural controller robustness that attributed primarily 
to the absence of a feedback signal. Optimizing the open-
loop system of the direct inverse controller, a feedback 
signal from the system output is then inputted backward to 
the neural controller such in a closed-loop system as can 
be seen in Figure 3b. The neural networks that was used as 
the controller is also a multi-layer perceptron, the same 
architectural neural networks that was used as the system 
identification but with different data training for its 
learning. For both of the systems, a multi-layer perceptron 
with one hidden layer is usually used, and the learning 
mechanism is accomplished by using a back propagation 
method. 

The neural networks that was used as the 
controller is also a multi-layer perceptron, the same 
architectural neural networks that was used as the system 
identification but with different data training for its 
learning. For both of the systems, a multi-layer perceptron 
with one hidden layer is usually used, and the learning 
mechanism is accomplished by using a back propagation 
method. Learning is done by successively adjusting the 
connections weight between neurons in the hidden layer 
and output layer based on a set of input patterns as vectors 
and a corresponding set of the output patterns of the plant, 
as the desired output vector. 

During the iterative process, an input vector is 
presented to the network and propagated forward to 
determine the output vector from the output layer. The 
differences between the actual output vector and the 
desired output vector represents as the error that should be 
minimized, by adjusting the connections weight. The 
adjustment of the neural weights is calculated through the 
back propagated error as a function of the mathematical 
model of the neurons. The learning process continues until 
the network output vector provided a root-mean square 
error less than a determined value. 

As the neural controller that be applied directly 
on the system may disturb the plant, a simulation 
calculation by using a model of the plant is recommended. 
The dynamic behavior of the plant system is already 
modeled using a neural network, as the system 
identification. 
 
Neural Networks Based System Identification 

The system identification is a science of how to 
construct a mathematical models of a dynamic system by 
using an observation through an input and output data. The 
first step in the identification process is by designing a 
suitable experiment which brings out the acquired input-
output data that contain maximum information regarding 
the process (Ljung, 1999). The collected data is subjected 
to some preprocessing technique in order to remove the 
effect of undesired noise and imperfections that disturbs 
the system under investigation. In the next step, a set of 
candidate models is proposed, and a rigorously 
examination of the proposed models are conducted in 

order to verify the quality of the developed model. When 
the proposed model meets the chosen criteria which reflect 
the intended use of the model, the proposed model is 
accepted and can be applied, otherwise, it is rejected and 
another model is examined again. This procedure is 
repeated until the satisfactory model can be determined.  

Various methods have been vigorously studied 
and developed for nonlinear system identification, mainly 
based on a parameterized model. The parameters are 
updated repeatedly to minimize the error of the system 
identification output. A nonlinear dynamical system with 
input x and output y can be modeled as: 

           (2)          

where y(k) is the output of the model, φ(k) is the 
regression vector and θ is the parameter vector. Depending 
on the choice of the regressors φ(k), for Nonlinear Auto 
Regressive with eXogenous input (NARX) model 
structure, the regression vector is derived from a collection 
of a finite number of the past inputs and outputs, and can 
be written as 

   (3) 

where Nx denotes the maximum lag of input and Ny is the 
maximum lag of the output.  
 The use of back propagation neural networks 
(BPNN) to approximate the nonlinear mapping of NARX 
identification model is shown in Figure 4a. The neural 
architecture is determined by using input neuron that 
consists of the input and output signals with Nx = 5 and 
Ny= 5, respectively, followed by one hidden layer with 
twenty neurons and one output neuron. The inputs x(k-1), 
x(k-2),…, x(k-Nx) and y(k-1), y(k-2),…, y(k-Ny) are 
multiplied by weights vxnm and vynm, respectively, and 
summed at each hidden neurons. Noted that n=1,2,…, N is 
the number of input neuron and m=1,2,…, M the number 
of the hidden neuron. 
 

 
Figure-4. System identification of the PPR® (a) neural 

network architectural for system learning (b) comparison 
of the output signal of plant and the neural network based 

system identification. 
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Figure-5. (a) Block diagram of the neural networks  
based inverse controller, (b)  comparison of the control 

signals the  and . 
 

The Sigmoid activation function is then applied 
to this summed value yields the output of the hidden 
neuron, zm(k). Following the same procedure as for hidden 
neuron, multiplying the hidden neuron output zm(k) by 
weights wm, and by applying the same Sigmoid activation 
function, the output y(k) can be calculated as  

    (4) 

 
Figure-4b shows the output of the neural networks as the 
system identification. As clearly seen in this figure, the 
MSE between the actual and the output of the system 
identification is 7.1938×10-5, which means that the neural 
system is successfully mimicking the plant behavior with a 
very high approximation.  
 
Neural Networks Based Controller System  

The inverse neural controller, as can be seen in 
Figure-3, is basically a neural networks structure 
representing the inverse of the system dynamic after the 
completion of a training process. The neural networks 
represents the inverse of the system dynamics is given by 

                                               (5) 

Schematic diagram of the learning the inverse neural 
controller is shown in Figure-5a, with Nx = 4 denotes the 
maximum lag of the input plant and Ny = 4 is the 

maximum lag of the output system. The three-layer 
networks consists of one input layer with 8 neurons, a 
hidden layer with 16 neurons and one output layer with 
one neuron. The 8-16-1 network is then trained to follow 
the desired output signal of the plant by using a back 
propagation algorithm.  

Figure-5b shows the simulation result of the 
inverse neural controller, where the MSE between the 
controls signal, the output from the inverse controller, and 
the desired signal is 6.0119×10-4. These numerical results 
indicate that back propagation neural networks show a 
good fidelity to be used as the direct inverse controller.  

 
NUMERICAL SIMULATION AND DISCUSSION 

The neural networks controller design and its 
experimental performance analysis for both the open-loop 
and the closed-loop systems are carried out on the 
MATLAB platform. The performance of the direct inverse 
neural networks controller for PPR® plant is firstly 
evaluated using an open-loop system, and the experiment 
results are depicted in Figure-6a, with the MSE between 
the outputs of the systems is 2.2060×10-4. As can be seen 
from this figure, the numerical results of the NN-DIC are 
in good agreement with that of the reference signal.  

Figure-6b shows the experimental output 
response of the PPR® when evaluated using a closed-loop 
system. The MSE between the outputs of the systems in 
the closed-loop system is 9.4241×10-4. From the 
comparison of these experimental results, we can conclude 
that MSE of the open-loop system is lower than that of the 
closed-loop system.  
 

 
 

Figure-6. Results comparison of NN-DIC for (a) open-
loop system and (b) closed loop system. 
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Figure-7. (a) Schematic diagram of the fine-tuning  

method for the NN-DIC (b) comparison of the control 
signal u(k) and the output of fine-tuned NN-DIC 

system .  
 

 
Figure-8. Comparison of the Output and reference signals 
using NN-DIC fine tuning method (a) open-loop system 

configuration (b) closed loop system configuration. 
 

In order to have a better performance of the NN-
DIC on producing a lower MSE of the output plant and the 
reference input, a fine tuning of the DIC is implemented. 

Block diagram of the fine tuning system is depicted in 
Figure-8, where the output of the plant is inputted back to 
the NN-DIC, in order to produce the control signal , 
which may differ from the control signal produced by NN-
DIC. Using the error difference between the  and 

, the NN-DIC is trained again until reaches it’s 
confidence. The Fine-tuned NN-DIC is now ready to be 
used as a new NN-DIC for both the open-loop and the 
closed loop systems.  

 
Table-1. Performance comparison of the normal NN-DIC 

and the Fine-tuned NN-DIC. 
 

 
 

Using the same experimental procedure such as 
in Figure-4, numerical result of using the Fine-tuned NN-
DIC on the open-loop system is shown in Figure 9a. The 
MSE between the output signal y(k) and the reference 
signal r(k) is 7.0988×10-5. Figure 9b shows the 
comparison between the output signal y(k) and the 
reference signal r(k) for the closed-loop system, with the 
MSE is 5.5267×10-4. As can be clearly see from this 
figure, the open-loop system shows a lower MSE 
compared with that of the closed-loop system. 

Table-1 shows the comparison of the overall 
experiments results in terms of MSE for both normal NN-
DIC and Fine-Tune NN-DIC under Open-loop and 
Closed-loop systems. As clearly shown in this table, for 
every signal parameters, i.e., the control signal and the 
output signal, the Fine-tuned NN-DIC shows lower MSE 
compare with that of normal NN-DIC, for both open-loop 
and closed-loop systems. While in the normal NN-DIC, 
the MSE difference between the output signal using Open-
loop and Closed-loop systems are very small, Fine-tuned 
NN-DIC shows a big difference between the output signal 
of the Open-loop system in respect to the output signal of 
the closed-loop systems. 

This phenomena is may due to the error of the 
neural networks as the system identification in a closed-
loop system is also feeding back to the NN-DIC, which in 
turn making the control signal may deviate further from 
the actual requirement. 

 
CONCLUSIONS 

We have presented here, an in-depth performance 
analysis of a neural networks based direct inverse 
controller for a Pressure Process Rig® system. 
Improvement of the NN-DIC is performed by using a fine-
tuning method, which significantly decreased the MSE of 
the controller. The experimental procedure was also 
investigated the performance of an open-loop system and 
the closed-loop system. It is clearly seen that the open-
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loop system shows lower MSE compare with that of the 
closed-loop system, indicating that the closed-loop system 
in this definition may differ from an error based controller 
system. Further research on developing the error based 
neural controller is now under investigation.  
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