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ABSTRACT 

In this paper, a new filtering algorithm is proposed for system control of the sensorless BLDC motor based on the 

Ensemble Kalman filter (EnKF). The proposed EnKF algorithm is used to estimate the speed and rotor position of the 

BLDC motor only using the measurements of terminal voltages and three-phase currents. The speed estimation 

performance of developed EnKF was compared with the Extended Kalman Filter (EKF) under the same conditions. Results 

indicate that the proposed EnKF as an observer shows better performance than that of the EKF. 

 

Keywords: speed estimation, sensorless brushless DC motor, ensemble kalman filter, extended kalman filter. 

 

INTRODUCTION 

Brushless Direct Current (BLDC) is a motor 

without brush and electronically control; and recently is 

one of the motor types that rapidly gaining popularity in a 

number of industrial applications. Because of its 

characteristics, such as high starting torque, high 

efficiency with no excitation losses, low noise (silent) 

operation and high durability, BLDC motors are used in 

various applications such as in various types of 

compressors, in electrical vehicles, hard disc drives and in 

medical applications (Liu, 2006). To replace the function 

of cummutators and brushes, the BLDC motor requires an 

inverter and a position sensors such as Hall-effect, 

resolver, or absolute encoder that detects the rotor position 

for a proper commutation of current. The rotation of the 

BLDC motor is based on the feedback of the rotor position 

which is obtained from a sensor position (i.e., a hall 

sensors). BLDC motor usually uses three hall sensors for 

determining the commutation sequence, hence,the 

installation of these sensors poses several problems for the 

motor-drive system. As the consequence, various problems 

occurred on the operation of the BLDC motor such as 

reduce reliability and system robustness, difficulty on its 

installation and maintenance, and increasing the size and 

the expense of the motor (Niapour, 2014). 

To overcome the negative effects of the used 

sensor systems, the researches are doing researches on the 

possibility of a sensor-less systems. Iizuka e al., proposed 

a zero-crossing point (ZCP) of the back-EMF and a speed-

dependent period of time delay (Iizuka, 1985); however, 

this method has an error accumulation problem when the 

motor is operated at a low speed. Another sensorless 

method is a Flux Calculation Method (Kim, 2004), but as 

with the previous proposed method, this method has also 

performed an error accumulation problem for integration 

at a low speed. This method also demands a lot of 

computational cost and is sensitive to a parameter 

variation, then an expensive floating-point processor 

would be required to handle this complex algorithm. The 

third method is developed based on the function of an 

observer (Kim, 2004). Various types of observers are then 

used to estimate rotor position, especially the Extended 

Kalman Filter (EKF) (Lenine, 2007). The biggest 

advantage of using observers is lied on that all of the states 

in the system can be estimated, including with the states 

that are hard to obtain by measurements. However, there 

are also some limitations on using the EKF as an observer, 

such as the characteristics of the EKF that can only be 

performed as first-order accuracy, a high computational 

complexity due to calculation of the Jacobian matrices and 

its covariance matrix. However, the most important 

problem related with the used of EKF as an observer is 

lied on its weak robustness characteristics against 

parameter detuning.  

 

 
 

Figure-1. The control diagram of sensorless BLDC motor. 

 

Figure-1 shows the block diagram of the system 

operation of a speed control sensorless BLDC motor using 

a family of Kalman filters, as an observer, for estimating 

the rotor speed () and the rotor position (). To turn the 

BLDC motor, a DC power supply is necessary to be fed 

through a three-phase current-controlled voltage-source 

mailto:muhammad.rifan@ui.ac.id


                               VOL. 10, NO. 17, SEPTEMBER 2015                                                                                                         ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      7387 

inverter. And to be rotated precisely in a determined 

sequence of times, a control signal timed by a precisely 

rotor position is required, i.e. turning the ON/OFF of the 

active inverter transistor pair.  

As can be seen from this figure, the input signal 

into the controller is the difference between the reference 

rotor speed ref and the actual output, which in a 

sensorless system, is provided also from the observer. 

Thus, the function of the observer, in this case is the 

family of Kalman Filters, is to provide the estimated of the 

actual rotor speed () and the rotor position (). The PID 

controller process this speed error signal (e) into a torque 

command (ref), which in the reference current generator, 

this torque command (ref) is combined with the position 

signal () to provide the current signal for each phase of 

the current controller system. In a sensorless system, these 

positions signal (), which are very important in providing 

the best performance curve of the BLDC motor, is 

provided also from the observer. Then, the current signal 

of each phase of the motor is compared with the the 

feedback BLDC current, then generates the fault currents 

of each phase of the motor for further fed to the inverter to 

rotate the motor. 

In this paper, to provide a better estimation of the 

actual rotor speed () and the rotor position (), an 

Ensemble Kalman Filter (EnKF) as an observer is 

proposed. The characteristics of the EnKF are then 

compared with that of the EKF in an experimental 

procedure, with all of the programs are executed in 

MATLAB environment. As can be seen in our 

experimental results, it is proved that our proposed EnKF 

estimation system outperformed the EKF system, 

especially on its characteristics performance at various 

speed references.    

This paper is organized as follows. Section II 

presents description of the Brushless DC motor system, 

including with its mathematical representations. Section III 

discusses the development of the Ensemble Kalman Filter 

based controller in detail, including with its comparison 

with that of the Extended Kalman Filter. Section IV 

presents the experimental results and discussion, follows 

by the conclusions that is presented in Section V.  

 

MATHEMATICAL MODEL OF THE BLDC 

As stated early, information regarding the rotor 

speed () and the rotor position () signals are necessary 

in order to control the BLDC motor. In this paper, a three-

phase BLDC motor with star connection is considered (see 

Figure 2) and used as the reference. The mathematical 

model of the BLDC motor is derived, in order to provide 

the mathematical relationship between the rotor speed (), 

the rotor position () and the BLDC motor input current, 

by which the Kalman Filter could provided the estimated-

information for the controller.  

The general voltage equation of BLDC motor can 

be written as follows (Sheel, 2012): 

[ݒݒݒ]  = [ܴ௦ Ͳ ͲͲ ܴ௦ ͲͲ Ͳ ܴ௦] [���] + ௦ܮ] Ͳ ͲͲ ௦ܮ ͲͲ Ͳ [௦ܮ ௗௗ௧ [���] + [݁݁݁]    (1) 

 

which the induced backs EMFs are trapezoidal 

and their  peak values are equal to λmω 

The electromagnetic torque can be calculated by 

 � = ೌ�ೌ+್�್+�� = �ሺ ݂� + ݂� + ݂�ሻ                  (2) 

 

where fa, fb, fc have shapes like ea, eb, ec, 

respectively, and their maximum values are one. The 

equation of motion for a simple system with an inertia Js, a 

friction coefficient Bs, and a load torque TL can be written 

as: 

௦ܬ  ௗ�ௗ௧ + �௦ܤ = � − �                                   (3) 

 

 
 

Figure-2. Circuit of a BLDC motor drive. 

 

The rotor speed () and the rotor position (), can 

be written as: 

 ௗ�ௗ௧ = �ଶ �                                                      (4) 

 

where P is number of pole on rotor. 

While the state space form of such system can be 

defined as: 

ݔ̇  = ݔܣ +  (5)                                       ݑܤ

 

where  

ݔ  = [� � � � �]�                                      (6) 

ݑ  = ݒ] ݒ ݒ �]�                                      (7) 
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ܣ =
[  
   
   − ��� Ͳ Ͳ − ��� ሺ�ሻܨ ͲͲ − ��� Ͳ − ��� ܨ ቀ� + ସ�ଷ ቁ ͲͲ Ͳ − ��� − ��� ܨ ቀ� + ଶ�ଷ ቁ Ͳ��� ሺ�ሻܨ ��� ܨ ቀ� + ସ�ଷ ቁ ��� ܨ ቀ� + ଶ�ଷ ቁ − ��� ͲͲ Ͳ Ͳ �ଶ Ͳ]  

   
   
                                                                (8) 

 

ܤ =
[  
   
  ଵ� Ͳ Ͳ Ͳ ͲͲ ଵ� Ͳ Ͳ ͲͲ Ͳ ଵ� Ͳ ͲͲ Ͳ Ͳ ଵ� ͲͲ Ͳ Ͳ Ͳ Ͳ]  

   
  
                      (9) 

 

THE SPEED CONTROLLER OF THE BLDC 

MOTOR 

The most importance parameter for controlling 

the BLDC motor is the speed control, and the most 

effective controller for the BLDC motor is the PID 

(Proportional, Integral, and Derivative) controller. The 

equation of a PID controller can be written as 

 � = ݁ܭ + ��� ∫݁ ݐ݀ + �ௗܭ ௗௗ௧                                   (10) 

 

with e the error input signal, ref the manipulated output 

signal, Kp the proportional gain, Ti the integral time 

sequence, and Td the derivative time sequence. These 

parameters, Kp, Ti, and Td are carefully chosen to meet the 

best prescribed performance criteria. 

In order to use the PID controller, the parameters 

related with its operation must be firstly tuned. This tuning 

process is utilized to synchronize the controller withthe 

controlled variable, thus allowing the process of the plant 

to be optimized accordance with the desired operating 

condition. Standard methods for tuning the controllers and 

the criteria for judging the loop tuning process have been 

investigated for many years. Some of them are 

Mathematical criteria, Cohen-coon Method, Trial and error 

method, Continuous cycling method, Relay feedback 

method, Kappa-Tau tuning method, and Chien-Hrones-

Reswick (CHR) PID tuning method. As the CHR method 

performed better compare with that of Cohen-coon or 

Ziegler-Nichols methods (Gireesh, 2014), (Xue, 2007),  

especially for a tracking control and for a disturbance 

rejection problems, in this paper, we have used CHR 

technique to find the optimal values of Kp, Ti and Td of the 

PID controller for the BLDC motor speed control system.  

 

 
 

Figure-3. CHR step response tuning method. 

 

Figure-3 shows a simple approach on calculating 

the time constant T, the delay time L, the controller gain k 

and determining the constant value of =kL/T of the CHR 

method, derived from the step time response of the system 

under investigation. Table-1 shows the CHR method 

formula for determining those parameters constant for the 

P, PI, and PID controllers, more specifically using a 0% 

overshoot and 20% overshoot phenomena. Please note that 

the quickest periodic response of the system under step 

response input is labeled with 0% overshoot, while the 

quickest oscillatory process is labeled with 20% overshoot. 

Using those parameters value such as in the Table-1, the 

proportional controller gain, the integral time, and the 

derivative time of the P, PI, and the PID controllers using 

the CHR tuning rules for the determined BLDC motor are 

calculated and depicted in Table-2. 

Figure-4 shows speed response parameters of the 

closed loop system with the P, PI, and the PID controllers 

for the determined reference speed of 1500 rpm with no 

load condition and Table-3 shows the time domain 

analysis of the speed control of the BLDC motor 

performance calculated from these experiments. Results 

show that the PID controller performed the best overshoot 

performance, especially when using the 0% overshoot 

constants. 

 

ENSEMBLE KALMAN FILTER AS AN OBSERVER 

The fundamental idea of an estimation system is 

to use a mathematical model derived from the observed 

plant or a system to calculate the estimated output 

parameters value from a measured input parameters. As 

long as there is a difference between the estimated outputs 

value and the measured inputs, this error is fed back to the 
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estimation system for reducing this difference by 

correcting the estimated output values. The best estimator 

from the family of the Kalman Filters so far is the 

ExtendedKalman filter (EKF), which hasbeen usually used 

to estimate the instantaneous system state variables and 

stator resistance of the BLDC motor byusing the 

actualvoltagesandcurrents derived through the 

mathematical model oftheBLDC motor. To improve the 

performance characteristics of the EKF estimator, we 

proposed in this paper the Ensemble Kalman Filter (EnKF) 

as an estimation system that will be described later. 

 

Extended Kalman Filter 

The EKF estimation system is estimator 

developed based on a Taylor expansion series which can 

handle almost every nonlinear system. Generally, 

estimation system by EKF can be devided into two stages: 

the prediction step and the correction step. In the first 

stage, the predicted value of the state variables and the 

predicted state covariance matrix, which is expressed by 

Pk|k-1, can be obtained, and in the second stage, the 

correction step, a correction term is added to the 

predicted ̂ݔ�|�. 

The estimation procedures for the EKF can be 

listed as follow: 

 

Selection of initial values for P, Q, R and X(0). 

State vector prediction 

 x̂k|k−ଵ = fሺx̂k−ଵ|k−ଵ, uk−ଵሻ                               (11) 

 

with x̂k|k−ଵ is calculated through (5) 

 

Prediction of error covariance matrix 

 Pk|k−ଵ = Fk−ଵPk−ଵ|k−ଵFk−ଵT + Qk−ଵ                  (12) 

 

Calculation of correction factor of EKF 

 Sk = HkPkHkT + Rk                                   (13) 

 Kk = SkHkTSk−ଵ                                    (14) 

 

Table-1. CHR tuning formula for set point regulation. 
 

Controller Type 
With 0% overshoot With 20% overshoot 

Kp Ti Td Kp Ti Td 

P 0.3/   0.7/   

PI 0.35/ 1.2T  0.6/ T  

PID 0.6/ T 0.5L 0.95/ 1.4T 0.47L 

 

Table-2. Values of PID parameter. 
 

Controller 

Type 

With 0% overshoot With 20% overshoot 

Kp Ti Td Kp Ti Td 

P 4.20478605   9.81116746   

PI 4.90558373 0.034924  8.40957211 0.029104  

PID 8.40957211 0.029104 0.001109 13.3151558 0.040745 0.001043 

 

Table-3. Time domain analysis. 
 

Controller Type 

With 0% overshoot With 20% overshoot 

Time 

Settling 

Over- 

shoot 

Peak 

Time 

Time 

Settling 

Over- 

shoot 
Peak Time 

P 0.0130 2.9826 0.0111 0.0132 3.0819 0.0111 

PI 0.0130 2.9984 0.0111 0.0131 3.0470 0.0111 

PID 0.0130 1.3779 0.0110 0.0112 2.2442 0.0110 
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Figure-4. Step response of the closed loop system with various parameter of PID controller. 

 

Estimation of output vector and state vector 

�ݕ̃  = �ݖ − ℎሺ̂ݔ�|�−ଵሻ                                   (15) 

�|�ݔ̂  = ଵ−�|�ݔ̂ +  (16)                                   �ݕ̃�ܭ

 

Estimation of error covariance matrix 

 �ܲ|� = ሺͳ − ሻ���ܭ �ܲ|�−ଵ                                   (17) 

 

The most important of the EKF as an estimation 

system is to determine the best initial values for the three 

covariance matrices, namely, Q, R, and P, since these 

initial values are highly contributing on the filter stability, 

i.e., the estimation values of the rotor speed and the rotor 

speed, and the convergence time. The difficulty of the 

EKF system to estimate the rotor speed, especially at a 

lower speed, makes the error of the estimation of the rotor 

position becomes too high (Ejlali, 2012), so that the 

controller of the sensorless drive is no longer working 

properly. 

 

Ensemble Kalman Filter 

The EnKF estimation system is a suboptimal 

estimator, where the error statistics are predicted by using 

a Monte Carlo or ensemble integration method to solve the 

Fokker-Planck equation. Unlike the EKF system, the 

evaluation of the filter gain ̂ܭ� in the EnKF system does 

not involve the approximation of the nonlinearity functions 

f(x, u) and h(x). Hence, the computational burden of 

evaluating the Jacobians of f(x, u) and h(x) does no longer 

exist in the EnKF system. The starting point for the EnKF 

estimation system as a particle filters is done by choosing a 

set of sample points, which is an ensemble of state 

estimations that captures the initial probability distribution 

of the state. These state estimation points are then 

propagated through the true nonlinear system, so that the 

probability density function of the actual state can be 

approximated by the ensemble of the estimation system 

(EnKF). 

The EnKF estimation method consists of three 

stages. The first step is called the forecast step; where to 

represent the error statistics of the system, assume that at 

time k, there are an ensemble of q forecasted state 

estimations with random sample errors. We denote these 

ensemble as �� ∈ ܴ௫ , where 

 Xkf ≜ ቀxkfభ , xkfమ , ⋯ , xkfqቁ,                                   (18) 

 

with the superscript fi refers to the i-th forecast ensemble 

member. with xkfi is calculated through (5). Then, the 

ensemble mean ̅ݔ� ∈ ܴ is defined by 

 x̅kf ≜ ଵq ∑ xkfiqi=ଵ                                     (19) 

 

Since the true state xk is not known, we 

approximate (18) by using the ensemble members. We 

define the ensemble error matrix ܧ� ∈ ܴ௫  around the 

ensemble mean by 

 Ekf ≜ [xkfభ − x̅kf ⋯ xkfq − x̅kf ]                   (20) 

 

and the ensemble of the output error ܧ௬� ∈ ܴ௫  by 

 E୷ka ≜ [ykfభ − y̅kf ⋯ykfq − y̅kf ]                                  (21) 
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We then approximate the �ܲbyܲ̂�, the ௫ܲ௬�
by ܲ̂௫௬�

, and the ௬ܲ௬�
by ܲ̂௬௬�

, respectively, where 

 P̂kf ≜ ଵq−ଵ Ekf (E୷kf )T
,P̂୷୷kf ≜ ଵq−ଵ E୷kf (E୷kf )T

                  (22) 

 

Thus, we interpret the forecast ensemble mean as 

the best forecast estimations of the state, and the spread of 

the ensemble members around the mean as the error 

between the best estimations and the actual state. 

The second step is the analysis step: To obtain the 

analysis estimations of the state, the EnKF performs an 

ensemble of parallel data assimilation cycles, where for i = 

1, . . . , q 

 xkai = xkfi + K̂k (yki − hቀxkfiቁ)                                  (23) 

 

The perturbed observations ݕ��  are given by 

 yki = yk + vki                                     (24) 

 

where ݒ��  is a zero-mean random variable with a normal 

distribution and covariance Rk. The sample error of the 

covariance matrix computed from theݒ��  converges to Rk as � → . We approximate the analysis of the error of the 

covariance matrices �ܲ byܲ̂�, where 

 P̂ka ≜ ଵq−ଵ EkaEkaT
                                    (25) 

 

And ܧ� is defined by with ݔ��replaced by ݔ��  and ̅ݔ� 

replaced by the mean of the analysis estimate ensemble 

members. We use the classical Kalman filter gain 

expression and the approximations of the error covariances 

to determine the filter gain by ̂ܭ� by 

 K̂k = P̂୶୷kf (P̂୷୷kf )−ଵ
                                   (26) 

 

The last step is the prediction of error statistics in the 

forecast step: 

 xk+ଵfi = f(xkai , uk) + wki                                    (27) 

 

where the values are ݓ��  sampled from a normal 

distribution with average zero and covariance ܳ�. The 

sample error covariance matrix computed from the ݓ��  

converges to ܳ� as � → . Finally, we summarize the 

analysis and forecast steps. 

Analysis Step: 

 K̂k = P̂୶୷kf (P̂୷୷kf )−ଵ
                                   (28) 

 

xkai = xkfi + K̂k (yki − hቀxkfiቁ)                                  (29) 

 x̅ka = ଵq ∑ xkaiqi=ଵ                                     (30) 

Forecast Step: 

 xk+ଵfi = f(xkai , uk) + wki                                    (31) 

 x̅k+ଵf = ଵq ∑ xk+ଵfiqi=ଵ                                    (32) 

 Ek+ଵf = [xk+ଵfభ − x̅k+ଵf ⋯xk+ଵfq − x̅k+ଵf ]                  (33) 

 E୷ka ≜ [ykfభ − y̅kf ⋯ykfq − y̅kf ]                                  (34) 

 P̂୶୷kf = ଵq−ଵ Ekf (E୷kf )T
,P̂୷୷kf = ଵq−ଵ E୷kf (E୷kf )T

                  (35) 

 

RESULTS AND DISCUSSIONS  

A sensorless speed estimation and control system 

has been simulated using MATLAB. Simulation 

parameters of the BLDC motor are given as follows: the 

stator resistance R=0.7, the equivalent inductance of the 

stator Ls=5.21×10−3 H, the maximum of each phase 

winding permanent magnet flux m=0.05238Wb, the inertia 

J=0.022×10−3 kgm2
, the viscous friction coefficient B=0 

Nms, the poles of the permanent magnet p=4 and 

simulation step length T=5×10
−5

s, x0=[0 0 -1 1 0]
T
.  

For the EKF system, the x̂k|k−ଵ  is calculated 

from (5) and the Jacobian matrix  F = ∂∂୶ A is calculated 

from (8), while for the EnKF the same equation is used to 

calculate Xkf , with the upper index f, the number of the 

ensemble member, and in this paper is determined to be 8. 

In order to reach an insight distinct from the 

whole system performance of the proposed sensorless 

algorithm, the motor operation needs to be evaluated under 

different conditions. The effectiveness of the proposed 

algorithm and its comparison will be analyzed based on 

the performance of the estimation systems from a low 

speed operation added with the various speed increment 

operations.  

In the first experiment, low speed operation 

performance is conducted. The reference speed is 

determined to be 200 rpm, and the experimental results 

(i.e. the performance curves) are presented in Figure 5.As 

can be seen in from this figure, the EnKF estimation 

system performed a better predictive ability compare with 

that of the EKF estimation system. It is also clearly seen 

that both the rotor position estimation error and the rotor 

speed estimation error of the EKF estimation is increased 

as increasing the experimental time, while those error 

values for EnKF estimation system are close to constantly 

zero. In such conditions, the estimations error for both of 

the rotor position and the rotor speed of the EKF 
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estimation system are growing to be very high, that makes 

the controller and the sensorless drive is no longer possible 

to effectively control the motor. 

These phenomena are in contrast with the 

response of the EnKF estimation system, which show 

nearly zero estimations error, for both the rotor position 

and the rotor speed.  

The second experiment is performed to evaluate 

the response of the EKF and the EnKF estimation systems 

on various speed changes operation.In this experiment, the 

reference speed changes from 2000 to 3600 rpm within 

t=0.25s; then the reference speed is decreased from 3600 

to 1600 rpm within t=0.5s, and from 1600 to 2800 rpm 

within t=0.75s, and the experimental results (i.e. the 

performance curves) are depicted in Figure 6. As it was 

expected from the theory, the performance curves of the 

EnKF estimation system works properly with very high 

reliability, with the estimated value of the actual speed 

could be the same as the speed changes. However, as can 

also be clearly seen from this figure, the performance 

curves of the EKF estimation system are showing a 

fluctuated estimation rotor speed values, providing a high 

degree of estimation error rate for both rotor speed and the 

rotor position.  

 

 
 

Figure-5. Performance curves of low speed. 
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Figure-6. Performance curves of various speed changes. 

 

CONCLUSIONS 

This paper focused on the estimation of BLDC 

motor speed for different speed references with EKF and 

EnKF. In order to evaluate the estimate performance, 

simulation experiments are presented in the paper. It is 

obvious to see that, from the simulation results, the 

accurate estimation performance can be obtained and the 

effectiveness of EnKF algorithm can be demonstrated. 

Moreover, the sensorless BLDC motor can be controlled 

precisely according to the designed EnKF algorithm. 
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