
 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7412

EFFECTIVE PREVENTION OF REVERSE ENGINEERING
ATTACKS ON SOFTWARE

Jeyalakshmi Jeyabalan, Priya Loganathan and Sree Subha Soundarajan

Department of Information Technology Rajalakshmi Engineering College Chennai, India
E-Mail: jeyalakshmi.j@rajalakshmi.edu.in

ABSTRACT

With increasing availability of knowledge over Internet, it has become so common that any novice can go way
beyond his technical ability to crack any licensed software and use it like any legitimate user. Reverse Engineering has
been one of the prominent techniques to crack the software with hash code if not the high level language. The paper
discusses a novel architecture where the effect of any such hacking effort in nullified. The paper narrates various static and
dynamic techniques for anti-reverse engineering and the need for integrating such techniques into the packers or installers.
Whatsoever the software and the purpose be, the anti-reverse engineering installers or packaging pieces of code can be
equipped with minimal prevention against reversing attacks, which may be mandatory in future . The virtualization
techniques are the key to the proposed system. The installer or unpacking software is equipped with the proposed
techniques, so that the reverse engineering efforts may be thwarted successfully.

Keywords: anti reverse engineering, software engineering, reverse engineering.

INTRODUCTION

Software is all about evaluating conditions and
implementing the cases or paths that follow a particular
condition. A successful attacker can make a guess, of those
assumptions and acquire an illegal entry into the software.
The availability of tools like Hex Editors has been a boon
to such attackers. The hex code if understood by the
attacker, not having knowledge of the high level language,
still enough damage can be done. This reverse engineering
effort can be successfully identified and thwarted using
few anti reverse engineering techniques. The proposed
system suggests a novel architecture for the same purpose.
In the proposed system, the installations or unpacking
invoke a new virtual machine, in which these activities
afore mentioned, happen. The effort proposes integration
of anti-reverse engineering techniques to the architecture
of software i.e. on installers or packaging software. The
activities of the process are closely monitored and if any
anomaly detected, the virtual machine is shut down by the
hypervisor.

SYSTSEM ARCHITECTURE

The proposed system as described in Figure-1,
does the unpacking or installations in a virtual machine
and the activities if found suspicious are suspended based
on the report generated. The process is checked using
static and dynamic techniques for any issues. The policy in
the repository is considered, while generating the report.
Based on the report the process proceeds or exits.

The existing systems like disassemblers,
decompilers, dumpers, etc focus only their scope of
activities. But if reverse engineering needs to be
successfully detected and prevented, then a wider scope of
analysis is required. The proposed system suggests
oneness of software and prevention techniques. And it also

enforces both static and dynamic techniques for this
purpose.

The architecture is briefly explained as follows.
The hacker tries to use hex editors and acquires the hex
code of the software. The system creates a virtual machine
and runs any unpacking and installation only in the virtual
machine. The static and dynamic analysis is performed on
the hex code. The policy repository stores the policies used
to evaluate the process of unpacking. The policies may
store subject oriented information like, the time taken to
execute any instruction on the software, the coverage that
is expected, the independent paths of the software which
will be traversed, the use-def patterns for any variable
which is legitimate and anomalous, the guard pages, the
breakpoints, the ACLs, the debug summary from the
debugger etc., The policy based analysis generates a report
on the process and if it is found to be deviating from
expected results, then the hypervisor simply shuts the
virtual machine. Thus it prevents any direct effect on the
system. Any such process runs in a sand box, thus
quarantining the entire process and its outcomes. If
trustworthy, the process continues, else the force shut
down process takes place.

The steps and techniques used to monitor the
virtual machine are briefed below. The techniques [1] [2]
[3] are broadly classified into manual and dynamic
techniques.

Static Techniques
 These techniques would only rely on hash code
walk through in order to find any errors or break ins. These
techniques follow the methods mentioned below.

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7413

Break Point Analysis
 Breakpoints can be manipulated and return
addresses can be altered for breaking in. A table containing
all breakpoints and their return addresses is maintained
namely Breakpoint Analysis Table(BAT) which is
compared with the traces collected from the system, can
identify breakpoint oriented attacks.

Coverage Analysis
 The coverage of the branches, conditions and
statements can be maintained for software and any
deviation from normal can be checked for issues.

Control / Data flow analysis
 The control flow and complexity analysis leads to
calculation of independent paths from McCabe Cyclomatic
Complexity, which can be used to check the execution of
any operation along with the data flow use-def patterns.

Timing Analysis
 The timing for any operation is recorded in
machine cycles. If any delay is detected, it could be
possible break in.

Automatic Technique
 The instructions are executed in debug mode,
which gives an added advantage of finer control over the
executing software. The methods used herein are stated
below. In addition to obfuscation the following techniques
can be used for prevention.

Guard Pages
 Guard pages act like an alarm for memory page
access. The guard pages trigger an alarm if any illegitimate
access is detected.

Anti-Dumping
 Dumping is the process of taking snapshot of the
executing traces and trying an attack. Possible protection
techniques are encryption, compression, transformations
based storage techniques. Nanomites are a famous
technique that replaces branches with breakpoints.
Information is misplaced and jump can be used to fetch
them back. Serial encryption in several levels can make
the life lot tougher for a hacker.

Figure-1. System architecture.

Process Analysis
 This intensely relies on process analysis. It can
use techniques like open process and self-debugging.
These are used to analyze if a debugger is attached to the
process, or making the child process debug the parent
process.

Stack Analysis
 Machine level instructions can be used in order to
ensure there is no tampering done. Stack traces can be
monitored in cases where stack can be compromised with
its own processes.

Access Control Check
 The ACL (Access Control List) and user accounts
can be scrutinized in order to ensure protection.

Native Code Permutation
 The code can be misplaced and records can be
maintained in order to confuse the hacker.

The above paragraphs illustrate how the ARES
system provides prevention against various vulnerabilities
of other existing systems.

Results and Analysis

The ARES (Anti Reverse Engineering System)
System is an aggregate of static and dynamic analysis
which gives it an edge over other existing systems. The
existing systems have their own scope of preventing

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7414

reverse engineering attacks, but the following tables
provide the comparison between existing systems.

Table-1. Comparison based on Type of Analysis.

Analysis

 Systems

Static
Analysis

Dynamic
Analysis

Both

Disassemblers 
Decompilers 

File Analyzers 
Debuggers 
Encryption 

Compression 
Obfuscation 

Transformations 
ARES System 

The above table illustrates how the ARES System
provides both static and dynamic analysis, which makes it
more wholesome and preferable.

Beyond that the following table provides a
different type of analysis based on the techniques used and
the existing systems. The table provides an idea on what
techniques are used and which vulnerabilities are patched
by existing systems.

CONCLUSIONS

The reverse engineering techniques can be
wrongly used to manipulate the legitimate access of the
software. This needs anti-reverse engineering techniques
as a part of the software unpackaging or installing
framework for evaluating the trustworthiness of the
software extraction process and prevent a reasonable
number of attacks as they happen. This can be a common
practice in the future because of growing usage of Internet
and computer access.

Table-2. Comparison based on techniques used and the systems.

Systems
Compared

 Prevention
 Techniques

Disassem
blers

Decomp
ilers

File
Analyze

rs

Debugge
rs

Encrypt
ion

Based
Systems

Compre
ssion
Based

Systems

Obfusca
tion

Based
Systems

Transfo
rmation
s Based
Systems

ARES
System

Breakpoint Analysis  

Coverage Analysis  

Timing Analysis  

Control/Data Flow  

Guard Pages  

Anti-Dumping     

Process Analysis  

Stack Analysis  

REFERENCES

[1] Dennis Yurichev. 2015. Reverse Engineering for

Beginners” [Online]. Available: www.beginners.re.

[2] Teodoro Cipresso. 2009. Software reverse engineering
education - Master’s Thesis, San Jose State
University.

[3] Shaukat Ali, Kirill Bogdanov, Neil Walkinshaw, “A
comparative study of methods for dynamic reverse-
engineering of state models,” The Software Quality
Engineering Laboratory, Carleton University, Canada,
2015, pp. 1-10.

[4] Barbara Frederiksen-Cross, Susan Courtney. 2011.
Reverse Engineering: Vulnerabilities and Solutions”,

Johnson Laird Ltd, Forensic Software Analysis,
Excerpt from PNSQC 2011 Proceedings. pp. 1-6.

[5] Teodoro Cipresso. 2009. Software Reverse
Engineering Education”, Masters Thesis presented to
San Jose State University SJSU Scholar Works. pp. 1-
122.

[6] “Software Evolution, Reengineering and Reverse
Engineering”, Tutorial on Software Design and
Architecture, King Fahd University of Petroleum and
Minerals [Online].

[7] A. Abdurazik and J. O_utt. Using UML collaboration
diagrams for static checking and test generation. In
International Conference on the Uni_ed Modeling
Language, pages. 383{395, 2000.

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7415

[8] Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[9] R. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 1999.

[10] L. Briand and Y. Labiche. A UML-based approach to
system testing. Journal of Software and Systems
Modeling, 1(1), 2002.

[11] L. Briand, Y. Labiche, and Y. Miao. Towards the
reverse engineering of UML sequence diagrams. In
Working Conference on Reverse Engineering, pages
57{66}, 2003.

[12] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K.
Zadeck. E_ciently computing static single assignment
form and the control dependence graph. ACM Trans.
Programming Languages and Systems. 13(4):
451{490}, Oct. 1991.

