
 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7583

DESIGN AND IMPLEMENTATION OF A DSP ARCHITECTURE FOR

WIRELESS SENSOR NODES

Ayana John and Subodh Raj M. S

Department of ECE, Sahrdaya college of Engineering, Thrissur, India

E-Mail: ayanajohn08@gmail.com

ABSTRACT

This paper proposes two different architectures to reduce power in wireless sensor nodes. Along with these two

architectures, carry looks ahead adder logic and SAD Algorithms using folded tree architecture are also explained. The

energy needed for the wireless communication is very high. Radio communication has highest energy consumption. Power

parallel prefix technique is used in this paper to reduce the energy and power. Parallel prefix adders have the best

performance in VLSI Design. The main aim of this paper is to design and implementation of newly proposed folded tree

architecture. Trunk and twig phase are the two different phases of the folded tree architecture. The energy consumption

can be significantly reduced by employing a more appropriate processing element. There are different types of

computations in microcontrollers. Folded tree architecture is based on the on the node data processing. Measurements of

the silicon implementation show an improvement of 10-20 × in terms of energy as compared to traditional modern micro

controllers found in sensor nodes.

Keywords: parallel prefix, radio communication, wireless communication, folded tree.

INTRODUCTION

 Environmental sensing, industrial inspection, and

military surveillance are the main application of the

wireless sensor networks. It consists of sensors, a radio,

and a microcontroller [1]. Energy Consumption is

expensive in radio communication. The communication

ratio to compute energy cost range from 100 to 3000. The

communication of data must be traded for on the node

processing which in turn can convert the many sensor

readings into a few useful data values.

Section II deals with on-the-node processing of

wireless sensor nodes. Section III covers the proposed

approach to exploit these properties. Section IV is on the

programming and usage of the resulting folded tree

architecture. Section V discusses the application specific

integrated circuit (ASIC) implementation of the design.

Section VI measures its performance. Section VII

illustrates the usefulness to WSNs with four relevant case

studies and the work is concluded in Section VIII.

CHARACTERISTICS OF WSNS AND RELATED

REQUIREMENTS FOR PROCESSING

Minimize Memory Access
Modern micro controllers are based on the

principles of divide and conquer strategy of ultra fast

processors. In addition the lack of task specific operations

leads to inefficient execution that results in longer

algorithms and significant memory book keeping.

Combine Data and Control Flow Principles
Two approaches exist to manage the data stream

and the instruction stream in the core functional unit.

Under control flow the data stream is a consequence of the

data stream. Traditional processor architecture is a control

flow machine with programs that execute sequentially as a

stream of instructions. The data flow program notices the

data dependencies. The latter approach has been hugely

successful in specialized high throughput applications

mainly multimedia and graphics processing. The main

characteristics of wireless sensor networks are data driven,

many to few, application specific.

Many-to-Few: Radio transmissions are very expensive in

terms of energy. They must be kept to a minimum in order

to extend node lifetime. Data communication must be

traded for on-the-node computation. The main aim is to

save energy. Here sensor readings can be reduced to a few

useful data values.

EXISTING METHOD

In existing method binary tree architecture is

used. The disadvantages of this method is at a time only

one node act as root nodes, other node act as leaves.

Therefore at a time only one data is send. Then the power

as well as energy is increased [3]. Here the requirement

and interconnection is high range. This new proposed

approach gives the limited power as well as energy. Here

the time requirement is low as well as interconnection path

when it is increased. So the new architecture, folded tree

architecture is proposed to send the data in the way of

wireless communication techniques.

Figure-1. Binary tree architecture.

http://www.arpnjournals.com/
mailto:ayanajohn08@gmail.com

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7584

WIRELESS SENSOR NETWORKS

The application of a wireless sensor network

(WSN) of spatially distributed autonomous sensors to

monitor physical or environmental conditions includes

temperature, sound, pressure, etc. and to cooperatively

pass their data through the network to a main location. The

modern networks are bi-directional, also enabling control

of sensor activity [4]. The development of wireless sensor

networks was motivated by military applications such as

battlefield surveillance. Today such networks are used in

many industrial and consumer applications include

industrial process monitoring and control, machine health

monitoring, and so on [5].

Figure-2. Block diagram of WSN.

Factors influencing sensor network design

 Fault Tolerance

 Scalability

 Production cost

 Transmission Media

 Power consumption

PROPOSED APPROACH

WSN Applications and On-The-Node Data

Aggregation Notwithstanding the seemingly vast nature of

WSN applications, a set of basic building blocks for on-

the-node processing can be identified.

Figure-2. A binary tree (left, 7 PEs) is functionally

equivalent to the novel. Folded tree topology (right, 4 PEs)

used in this architecture.

 Common on-the-node operations performed on

input data collected directly from the node’s sensors or
through in-the-network aggregation include filtering,

fitting, sorting, and searching. We published earlier that

these types of algorithms can be expressed in terms of

parallel prefix operations as a common denominator.

Possible applications of sensor networks are of interest to

the most diverse fields.

Parallel Prefix Operation
Prefix sums are trivial to compute in sequential

models of computation, by using the formula yi = yi −

1 + xi to compute each output value in sequence order.

However, despite their ease of computation, prefix sums

are a useful primitive in certain algorithms such

as counting sort and they form the basis of the scan higher-

order function in functional programming languages.

Prefix sums have also been much studied in parallel

algorithms, both as a test problem to be solved and as a

useful primitive to be used as a subroutine in other parallel

algorithms. Abstractly, a prefix sum requires only a binary

associative operator ⊕, making it useful for many

applications from calculating well-separated pair

decompositions of points to string processing [6].

Mathematically, the operation of taking prefix

sums can be generalized from finite to infinite sequences;

in that context, a prefix sum is known as a partial sum of

a series [7]. Prefix summation or partial summation

form linear operators on the vector spaces of finite or

infinite sequences; their inverses are finite

difference operators.

In functional programming terms, the prefix sum

may be generalized to any binary operation (not just

the addition operation); the higher order function resulting

from this generalization is called a scan, and it is closely

related to the fold operation. Both the scan and the fold

operations apply the given binary operation to the same

sequence of values, but differ in that the scan returns the

whole sequence of results from the binary operation,

whereas the fold returns only the final result. For instance,

the sequence of factorial numbers may be generated by a

scan of the natural numbers using multiplication instead of

addition.

Figure-3. Parallel prefix technique.

Trunk Phase
In the trunk phase the left value L is saved locally

as Lsave and it is added to the right value R, which is

passed on toward the root. This continues until the parallel

prefix element 15 is found at the root. Note that each time,

a store and calculate operation is executed.

http://www.arpnjournals.com/
http://en.wikipedia.org/wiki/Autonomous
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Counting_sort
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Well-separated_pair_decomposition
http://en.wikipedia.org/wiki/Well-separated_pair_decomposition
http://en.wikipedia.org/wiki/Partial_sum
http://en.wikipedia.org/wiki/Series_\(mathematics\)
http://en.wikipedia.org/wiki/Linear_operator
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Higher_order_function
http://en.wikipedia.org/wiki/Fold_\(higher-order_function\)

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7585

Twig Phase

The twig phase starts, during which data moves

in the opposite direction, from the root to the leaves. Now

the incoming value, beginning with the sum identity

element 0 at the root, is passed to the left child, while it is

also added to the previously saved Lsave and passed to the

right child. In the end, the reduced prefix set is found at

the leaves.

Folded Tree:

However, a straightforward binary tree

implementation of Blelloch’s approach as shown in

Figure. costs a significant amount of area as n inputs

require p = n – 1 PEs. To reduce area and power,

pipelining can be traded for throughput. With a classic

binary tree, as soon as a layer of PEs finishes processing,

the results are passed on and new calculations can already

recommence independently. The idea presented here is to

fold the tree back onto itself to maximally reuse the PEs as

shown in figure-4. In doing so, p becomes proportional to

n/2 and the area is cut in half. Note that also interconnect

is reduced. On the other hand, throughput decreases by a

factor of log2 (n) but since the sample rate of different

physical phenomena relevant for WSNs does not exceed

100 kHz, this leaves enough room for this trade-off to be

made. This newly proposed folded tree topology is

depicted in Figure on the right, which is functionally

equivalent to the binary tree on the left.

FOLDED TREE PROGRAMMING

First the trunk phase is considered. The figure

shows four processing elements. The letters L and R

indicates left and right value of inputs A and B. According

to Blelloch approach, L is saved as Lsave and the sum

L+R is passed. To see exactly how the folded tree

functionally becomes a binary tree, all nodes of the binary

tree are assigned numbers that correspond to the PE,

which will act like that node at that stage. As can be seen,

PE1 and PE2 are only used once, PE3 is used twice and

PE4 is used three times. This corresponds to a decreasing

number of active PEs while progressing from stage to

stage. The first stage has all four PEs active. The second

stage has two active PEs: PE3 and PE4[8]. The third and

last stage has only one active PE: PE4

Figure-4. Trunk phase.

More importantly, it can also be seen that PE3

and PE4 have to store multiple Lsave values. PE4 must

keep three: Lsave0 through Lsave2, while Pe3 keeps two:

Lsave0 and L save1. PE1 and PE2 each only keep one:

Lsave0. The trunk phase PE program here has three

instructions, which are identical, apart from the different

RF addresses that are used. Due to the fact that multiple

Lsave‟s have to be stored, each stage will have its own RF
address to store and retrieve them. This is why PE4 needs

three instructions, PE3 needs two instructions and PE1 and

PE2 need one instruction.

Figure-5. Twig phase.

In twig phase the tree operates in the opposite

direction. According to Blelloch approach S is passed to

the left and the sum S+L save is passed to the right. Note

that here as well none of these annotations are global. The

way the PEs are activated during the twig phase again

influences how the programming of the folded tree must

happen.

CARRY LOOK AHEAD ADDER LOGIC

 The carry look ahead adder logic is the application

for folded tree algorithm. Regardless of the number base,

the basic idea of carry-look ahead logic is that at each

stage i of the incrementer or adder, there are new outputs

that take the place of the carry output. The carry-look

ahead logic composes these new outputs along with the

carry in to the entire adder to compute the carry inputs to

each stage. The look ahead logic is tree structured, with

the result that an n digit sum can be computed in O(log n)

time, whereas with the simple ripple-carry adder or

incremented, this would take O(n) time because of the

need to propagate the carry through all of the digits of the

number in sequence.

 Each of the carry-look ahead half adders form the

leaves of the tree combines carry in with one bit of the

addend to produce one bit of the successor, producing a

propagate signal that serves as input to the tree. The

internal nodes of the tree (marked x) combine the

propagate signals toward the root of the tree while taking

the carry in to that subtree and computing one bit of carry

that is sent back toward the leaves. At the root of the tree

is a single block (marked y) that computes the carry output

from the entire adder, if it is needed, from the propagate

http://www.arpnjournals.com/

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7586

signal for the entire number and the carry in to the entire

adder.

Figure-6. Addition with propagate-generate (PG) logic.

The half-adders at the leaves of the tree have two

outputs, si, the sum output from that leaf, and pi, the

propagate output. The sum output is identical to the sum

output of a conventional half adder, depending on the data

in, ai, and the carry in ci. The propagate output is new. The

propagate output from any stage of the increment circuit

indicates whether that stage will propagate a carry from

carry-in to that stage to carry-out from that stage. In

general, the propagate signal used for incrementing is

identical to the data in.

SAD ALGORITHM

Figure-7. PE array access from buffers.

SAD is an extremely fast metric due to its

simplicity; it is effectively the simplest possible metric

that takes into account every pixel in a block. Therefore it

is very effective for a wide motion search of many

different blocks. In digital image processing, the sum of

absolute differences (SAD) is a measure of the similarity

between image blocks. It is calculated by taking

the absolute difference between each pixel in the original

block and the corresponding pixel in the block being used

for comparison. These differences are summed to create a

simple metric of block similarity, the L norm of the

difference image or Manhattan distance between two

image blocks. The sum of absolute differences may be

used for a variety of purposes, such as object recognition,

the generation of disparity maps for stereo images,

and motion estimation for video compression [10].

Figure-8. Computational kernel of PE processing array.

To realise a regular VLSI architecture for VBSME,

the design employs the base of the primitive 4 × 4 block.

The input pixels are from the temporal buffers with 32

bits. Thus, this system can read four pixels with row-by-

row per cycle. The partial SAD value is accumulated with

an accumulator (ACC). After four cycles, one can achieve

a complete SAD for one motion vector of the 4 × 4 block.

The current coding pixels X00, X01, . . . and the reference

pixels Y00, Y01 are read in parallel. With 4 subtractions

and 3 additions, one can obtain the partial SAD from one

row per cycle. There are four partial SAD added to attain

the entire SAD for one motion vector of the 4 × 4 block.

RESULTS

Results of Binary tree Architecture

http://www.arpnjournals.com/
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Macroblock
http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Lp_space
http://en.wikipedia.org/wiki/Manhattan_distance
http://en.wikipedia.org/wiki/Object_recognition_\(computer_vision\)
http://en.wikipedia.org/wiki/Binocular_disparity
http://en.wikipedia.org/wiki/Computer_stereo_vision
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Video_compression

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7587

Results of Folded Tree Architecture

Results of carry look ahead adder logic

Results of SAD Algorithm

CONCLUSIONS

This paper describes the folded tree architecture

of a digital signal processor for WSN applications. The

design exploits the fact that many data processing

algorithms for WSN applications can be described using

parallel prefix operations, introducing the much needed

flexibility energy is saved to the following conditions.

1) Limiting the data set by pre processing with parallel

prefix operations.

2) The reuse of the binary tree as a folded tree

The future scope of this project is the end of

architecture router is included. It is used to reduce the

delay as well as congestion. Independent of illumination.

Thus the modified algorithms provides an advanced and

roust binarization technique for Optical character

Recognition.

REFERENCES

[1] Agrawal B., Chong F. T., Mysores. S and Sherwood T.

2008. “Exploring the processor and ISA design for

wireless sensor network applications”, in Proc. 21th

Int. Conf. Very-Large-Scale Integer. (VLSI) Design,

pp. 59–64.

[2] Backus J. 1997. “Can programming be liberated from

the von neumann style?” in Proc. ACM Turing Award

Lect., pp. 1–29.

http://www.arpnjournals.com/

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7588

[3] Ekanayake V.N., Kelly C. and R. Manohar. 2005. “Bit
SNAP: Dynamic significance compression for a low

energy sensor network asynchronous processor”, in
Proc. IEEE 11th Int. Symp. Asynchronous Circuits

Syst. pp. 144–154.

[4] Ekanayake V.N., Kelly C. and Manohar R. 2004.

“SNAP/LE: An ultra-low power processor for sensor

networks”, ACM SIGOPS Operat. Syst. Rev. -

ASPLOS, Vol. 38, No. 5, pp. 27–38.

[5] Hempstead M., Lyons and G.-Y. Wei. 2008. “Survey
of hardware systems for wireless sensor networks”,
Low Power Electron., Vol. 4, No. 1, pp. 11–29.

[6] Blelloch. 1987. “Scans as primitive parallel operations,
‟ IEEE Trans. Comput., Vol. 38, No. 11, pp. 1526–
1538.

[7] Blelloch G.E. 1990. “Prefix sums and their
applications”, Carnegie Mellon Univ., Pittsburgh, PA:
USA, Tech. Rep. CMU-CS- 90.

[8] Hennessy J. and Patterson D. 2007. “Computer
Architecture a Quantitative Approach”, 4th ed. San

Mateo, CA: Morgan Kaufmann.

[9] Hempstead M. Brooks D. and Wei G. 2011. “An
accelerator-based Wireless sensor network processor

in 130 nm cmos”, Vol. 1, No. 2, pp. 193– 202.

[10] Hempstead M., Brooks W., Welsh D. 2002.

“Tinybench: The case for a standardized benchmark

suite for Tiny OS based wireless sensor network

devices”, in Proc. IEEE 29th Local Comput. Netw.
Conf., Nov. 2004, pp. 585–586.

http://www.arpnjournals.com/

