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ABSTRACT 

Image compression is minimizing the size of a graphics file keeping the quality of the image to an acceptable 
level. Wavelets are mathematical tools for hierarchically decomposing functions. It allows to describe a function in terms 
of a coarse overall shape, plus details that range from broad to narrow. Haar Transform lends itself easily to simple manual 
calculations. Modified Fast Haar Wavelet Transform (MFHWT), is one of the algorithms which can reduce the calculation 
work in Haar Transform (HT) and Fast Haar Transform (FHT). The project is an attempt on implementation of an efficient 
algorithm for compression and reconstruction of images, using MFHWT. 
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INTRODUCTION 

Image compression plays a vital role in 
applications like video conferencing, remote sensing, 
medical imaging, magnetic resonance imaging etc. In most 
images the neighboring pixels are correlated and hold 
redundant information. The task then is to find out less 
correlated representation of the image. Two elementary 
components of compression are redundancy and 
irrelevancy reduction. Redundancy reduction aims at 
removing duplication from the signal source image. 
Irrelevancy reduction omits parts of the signal that is not 
noticed by the signal receiver.. Number of bits required to 
represent the information in an image can be minimized by 
removing the redundancy present in it. There are three 
types of redundancies: spatial redundancy, which is due to 
the correlation or dependence between neighboring pixel 
values; spectral redundancy, which is due to the 
correlation between different color planes or spectral 
bands; temporal redundancy, which is present because of 
correlation between different frames in images.  
 Image compression aims to reduce the number of 
bits required to represent an image by removing the spatial 
and spectral redundancies as much as possible. If n1 and 
n2 denote the number of information carrying units in 
original and compressed image respectively, then the 
compression ratio CR can be defined as CR=n1/n2;  
And relative data redundancy RD of the original image 
can be defined as RD=1 - 1/CR;  
 

 
 

Figure-1.  Image Compression model. 
 

 
Figure-2.  Image decompression model. 

 
A transformer transforms the input data into a 

format to reduce inter-pixel redundancies in the input 
image. Transform coding techniques use a reversible, 
linear mathematical transform to map the pixel values onto 
a set of coefficients, which are then quantized and 
encoded. Many of the resulting coefficients for most 
natural images have small magnitudes and can be 
quantized without causing significant distortion in the 
decoded image. The higher the capability of compressing 
information in fewer coefficients, the better the transform; 
so, the Discrete Cosine Transform (DCT) and Discrete 
Wavelet Transform (DWT) have become the most widely 
used transform coding techniques. Transform coding 
algorithms usually start by calculating transform 
coefficients , effectively converting the original pixel 
values into an array of coefficients within which the 
coefficients closer to the top-left corner usually contain 
most of the information needed to quantize and encode  
the image with little perceptual distortion. The resulting 
coefficients are then quantized and the output of the 
quantizer is used by symbol encoding techniques to 
produce the output bitstream representing the encoded 
image. In image decompression model at the decoder’s 
side, the reverse process takes place. But the 
dequantization stage will only generate an approximated 
version of the original coefficient values. 

 Quantization at the encoder side, means 
partitioning of the input data range into a smaller set of 
values. There are two main types of quantizers: scalar 
quantizers and vector quantizers. A scalar quantizer 
partitions the domain of input values into a smaller 
number of intervals. If the output intervals are equally 
spaced,the process is called uniform scalar quantization; 
otherwise, it is called non uniform scalar quantization. 
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The zig-zag scanning pattern for run-length 
coding of the quantized DCT coefficients was established 
in the original MPEG standard. The same pattern is used 
for luminance and for chrominance.  

Symbol (entropy) encoder creates a fixed or 
variable-length code to represent the quantizer’s output 
and maps the output in accordance with the code. It 
compresses the compressed values obtained by the 
quantizer to provide more efficient compression. Most 
important types of entropy encoders used in lossy image 
compression techniques are arithmetic encoder, Huffman 
encoder and run-length encoder.  For applications 
requiring fast execution, simple Run Length Encoding 
(RLE) is very effective.RLE is a very simple form of data 
compression in which runs of data are stored as a single 
data value and count. Each time a long run is encountered 
in the input data, two values are written to the output file. 
The first of these values is the character itself, i.e., a flag 
to indicate that run-length compression is beginning.  The 
second value is the number of characters in the run. 

 
WAVELET TRANSFORM 

 An image can be well-approximated by a sparse 
set of clustered significant coefficients in wavelet domain, 
and intelligent coding tools can be designed to reduce the 
bit rate required for coding this set. Wavelet transform 
exploits both the spatial and frequency correlation of data 
by dilations (or contractions) and translations of mother 
wavelet on the input data. It supports the multi resolution 
analysis of data, which allows progressive transmission 
and zooming of the image without the need of extra 
storage. It is also symmetric. That is both the forward and 
the inverse transform has the same complexity, building 
fast compression and decompression routines.  

The implementation of wavelet compression 
scheme is very similar to that of sub band coding scheme: 
the signal is decomposed using filter banks. Filters of 
different cut-off frequencies analyse the signal at different 
scales. The output of the filter banks is down-sampled, 
quantized, and encoded. The decoder decodes the coded 
representation, up-samples and recomposes the signal.  
If a signal is put through two filters: 
(i) a high-pass filter, high frequency information is kept, 
low frequency information is lost. 
(ii) a low pass filter, low frequency information is kept, 
high frequency information is lost. 
then the signal is effectively decomposed into two parts, a 
detailed part (high frequency), and an approximation part 
(low frequency). 

The sub signal produced from the low filter will 
have a highest frequency equal to half that of the original. 
According to Nyquist sampling this change in frequency 
range means that only half of the original samples need to 
be kept in order to perfectly reconstruct the signal. So, up-
sampling can be used to remove every second sample. The 
approximation sub signal can then be put through a filter 
bank, and this is repeated until the required level of 
decomposition has been reached.  

The DWT is obtained by collecting together the 
coefficients of the final approximation sub signal and all 
the detail sub signals. If all the details are ’added’ together 
then the original signal should be reproduced. The ideas 
are shown in the figure below. 
 

 
 

Figure-3. Filter banks. 
 

 
Figure-4. Sub-band coding example. 

 

 
 

Figure-5.  Image decomposition example. 
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The approximation subsignal shows the general 
trend of pixel values and other three detail subsignals 
show the vertical, horizontal and diagonal details or 
changes in the images. If these details are very small 
(threshold) then they can be set to zero without 
significantly changing the image  
 
Conservation and Compaction of Energy 

 Energy is defined as the sum of the squares of 
the values. So the energy of an image is the sum of the 
squares of the pixel values. The energy in the wavelet 
transform of an image is the sum of the squares of the 
transform coefficients. During wavelet analysis the energy 
of a signal is divided between approximation and details 
signals but the total energy does not change. During 
compression however, energy is lost because thresholding 
changes the coefficient values and hence the compressed 
version contains less energy. The compaction of energy 
describes how much energy has been compacted into the 
approximation signal during wavelet analysis. Compaction 
will occur wherever the magnitudes of the detail 
coefficients are significantly smaller than those of the 
approximation coefficients. Compaction is important when 
compressing signals because the more energy that has 
been compacted into the approximation signal the less 
energy can be lost during compression. If the energy 
retained (amount of information retained by an image after 
compression and decompression) is 100% then the 
compression is lossless as the image can be reconstructed 
exactly. This occurs when the threshold value is set to 
zero, meaning that the details have not been changed. If 
any value is changed then energy will be lost and thus 
lossy compression occurs. As more zeros are obtained, 
more energy is lost. Therefore, a balance between the two 
needs to be found out. 

 
Compression Techniques 

This investigation will concentrate on transform 
coding and then more specifically on Wavelet Transforms. 
Image data can be represented by coefficients of discrete 
image transforms. Coefficients that make only small 
contributions to the information contents can be omitted. 
Usually the image is split into blocks (subimages) of 8x8 
or 16x16 pixels, then each block is transformed separately. 
However this does not take into account any correlation 
between blocks, and creates "blocking artifacts" . However 
wavelets transform is applied to entire images, rather than 
sub images, so it produces no blocking artifacts. This is a 
major advantage of wavelet compression over other 
transform compression methods. 

 
How Wavelets Work 

The Haar function can be described as a step 
function ψ (t) 

 
In order to perform wavelet transform, Haar 

wavelet uses translations and dilations of the function, i.e. 
the transform make use of following function: 
 

 
 

where this is the basic works for wavelet expansion 
A Haar Transform decomposes each signal into 

two components, one is called average (approximation) or 
trend and the other is known as difference (detail) or 
fluctuation  

By taking average and difference from two nodes 
from previous level, approximate coefficients and detail 
coefficients for next level, n −1, n − 2, n − 3, of 
decomposition nodes are counted. The process is called 
Fast Haar Transform, FHT. 

A precise formula for the values of first average 

sub signal,   at one level for a 

signal of length N i.e.  is 
 

 
and the first detail subsignal, 

 at the same level is given as  

 
The procedure may be explained with the help of 

a simple example as shown below. Apply 2D HT to the 
following finite 2D signal. 
 

 
 

using 1D HT along first row, the approximation 
coefficients are 
 

 
and the detail coefficient are 
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The same transform is applied to the other rows 
of I. By arranging the approximation parts of each row 
transform in the first two columns and the corresponding 
detail parts in the last two columns we get the following 
results, in which approximation and detail parts are 
separated by dots in each row 
 

 
 

By applying the following step of 1D HT to the 
columns of the resultant matrix, we find that the resultant 
matrix at first level is 
 

 
 

Thus we have 
 

 
 

Each piece shown in example 1 has a dimension 
(number of rows/2) × (number of columns /2) and is called 
A, H, V and D respectively. A (approximation area) 
includes information about the global properties of 
analysed image. Removal of spectral coefficients from this 
area leads to the biggest distortion in original image H. 
(horizontal area) includes information about the vertical 
lines hidden in image. Removal of spectral coefficients 
from this area excludes horizontal details from original 
image V. (vertical area) contains information about the 
horizontal lines hidden in image. Removal of spectral 
coefficients from this area eliminates vertical details from 
original image D. (diagonal area) embraces information 
about the diagonal details hidden in image. Removal of 
spectral coefficients from this area leads to minimum 
distortions in original image. To get the value at next 
level, again HT is applied row and column wise on the 
piece A, obtained earlier as in example 1. Repeating this 
process recursively on the averages gives the full 
decomposition. We can reconstruct the image to any 
resolution by recursively adding and subtracting the detail 
coefficients from the lower resolution versions. Thus the 
HT is suitable for application when the image matrix has 
number of rows and columns as a multiple of 2. 
 Fast Haar Transform (FHT) involves addition, 
subtraction and division by 2, due to which it becomes 
faster and reduces the calculation work in comparison to 
HT. For the decomposition of an image, we first apply 1D 
FHT to each row of pixel values of an input image matrix. 

These transformed rows are themselves an image and we 
apply the 1D FHT to each column. The resulting values 
are all detail coefficients except for a single overall 
average coefficient. Figure. shows calculation of the 
typical Fast Haar Transform, FHT, for n = 4 , given by the 
data 
 

 

 
 
 Generally, the process is called wavelet 
decomposition and the detail coefficients are normally 
called as wavelet transform coefficients where these nodes 
will be considered in threshold process as well as 
reconstruction works in multi-resolution wavelet. In many 
applications especially signal processing, threshold 
wavelet coefficients can be done to clean out 
“unnecessary” details which are consider as noise. Then, 
the data can be obtained again through wavelet 
reconstruction. For the multi-resolution wavelet, the detail 
coefficients (wavelet transform coefficients) are needed to 
reconstruction the original data while the approximation 
coefficients are not necessarily involved. Mathematically, 
we regard wavelet decomposition (analysis) and 
reconstruction (synthesis) as wavelet transform and 
inverse of wavelet transform. 

 The transformation of the 2D image applies the 
1D wavelet transform to each row of pixel values. This 
operation provides us an average value along with detail 
coefficients for each row. Next, these transformed rows 
are treated as if they were themselves an image and apply 
the 1D transform to each column. The resulting values are 
all detail coefficients except a single overall average co-
efficient. In order to complete the transformation, this 
process is repeated recursively only on the quadrant 
containing averages. 

The image is comprised of pixels represented by 
numbers. Consider the 8*8 image shown in Figure-7.  
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The matrix representing this image is shown in Figure. 
 

 
 

Now we perform the operation of averaging and 
differencing to arrive at a new matrix representing the 
same image in a more concise manner. Consider the first 
row of the Figure. 
Averaging: (64+2)/2=33, (3+61)/2=32, (60+6)/2=33, 
(7+57)/2=32 
Differencing: 64–33 =31, 3–32= –29, 60–33=27 and 7–
32= –25 
The transformed row becomes (33 32 33 32 31 –29 27 –
25).  
Now the same operation on the average values i.e. (33 32 
33 32) is performed. i.e. first two elements of the new 
transformed row. Thus the final transformed row becomes 
(32.5 0 0.5 0.5 31 –29 27 –25). The new matrix we get 
after applying this operation on each row of the entire 
matrix is shown in Figure. 
 

 
 

Performing the same operation on each column of 
the matrix in Figure, we get the final transformed matrix 
as shown in Figure.  This operation on rows followed by 
columns of the matrix is performed recursively depending 
on the level of transformation. The left-top element of the 
Figure. i.e. 32.5 is the only averaging element which is the 
overall average of all elements of the original matrix and 
the rest all elements are the details coefficients. The point 
of the wavelet transform is that regions of little variation 
in the original image manifest themselves as small or zero 
elements in the wavelet transformed version. The 0’s in 
the Figure are due to the occurrences of identical adjacent 
elements in the original matrix. A matrix with a high 
proportion of zero entries is said to be sparse. For most of 

the image matrices, their corresponding wavelet 
transformed versions are much sparser than the originals. 
The original matrix can be easily calculated just by the 
reverse operation of averaging and differencing i.e. the 
original image can be reconstructed from the transformed 
image without the loss of information. Thus, it yields a 
lossless compression of the image. 
           

 
 

Figure-6.  Final transformed matrix after one step. 
 

However, to achieve more compression, we have 
to think of the lossy compression. In this case, a 
nonnegative threshold value say ∑ is set. Then any detail 
coefficient in the transformed data whose magnitude is 
less than or equal to ∑ is set to zero. It will increase the 
number of 0’s in the transformed matrix and thus the level 
of compression is increased. So, ∑=0 is used for a lossless 
compression. If the lossy compression is used, the 
approximations of the original image can be built up. The 
different thresholding methods we have used are: hard 
thresholding, soft thresholding and universal thresholding. 
These thresholding methods are defined as follows: 
 

 
 
where   is the standard deviation of the wavelet 
coefficients and N is the number of wavelet coefficients. 
In this paper, only the gray-scale images are considered. 
However, wavelet transforms and compression techniques 
are equally applicable to color images with three color 
components.  

Since the Haar Transform is memory efficient, 
exactly reversible without the edge effects, it is fast and 
simple. As such the Haar Transform technique is widely 
used these days in wavelet analysis. Fast Haar Transform 
is one of the algorithms which can reduce the tedious work 
of calculations. FHT involves addition, subtraction and 
division by 2. The Modified Fast Haar Wavelet Transform 
(MFHWT) is used for one-dimensional approach and FHT 
is used to find the N/2 detail coefficients at each level for  
a signal of length N. The project uses same concept of 
finding averages and differences but here that approach is 
extended for 2D images with the addition of considering 
the detail coefficients for  N/2 elements at each level.  
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ALGORITHM OF MFHWT IN 2D 
 A 2D MFHWT can be done by performing the 

following steps: 
- Read the image as a matrix. 
- Apply MFHWT, along row and column on entire 

matrix of the image to get a transformed image 
matrix of one level of input image. 

- For reconstruction process, FHT is used on the 
image matrix obtained in the above step. Calculate 
MSE and PSNR for reconstructed image. 
At each level in MFHWT we need to store only 

half of the original data used in FHT. For MFHT, its can 
be done by just taking (w+ x + y + z)/ 4 instead of (x + y)/ 
2 for approximation and (w+ x − y − z)/ 4 instead of (x − 
y)/ 2 for differencing process. 4 nodes have been 
considered at one time. The calculation for (w+ x − y − z)/ 
4 will yield the detail coefficients in the level of n − 2 . For 
the purpose of getting detail coefficients, differencing 
process (x − y)/ 2 still need to be done. 

 

  
 

Figure-7.  Modified Fast Haar Transform, MFHT. 
 
Compression steps: 
-.Digitize the source image into a signal s, which is a 

string of numbers and read the image as a matrix. 
-.Transform the signal into a sequence of wavelet 

coefficients w 
-.Use threshold to modify the wavelet coefficients from 

w to w’.  
-.Zig-zag scanning of the coefficients. 
- Run length encoding. 
- Entropy encoding (optional- if further compression is 

required) 
Reconstruction steps: 
-Decode the sequence 
-Reverse the zigzag pattern 
-Take Inverse transform of the coefficients. 

 
 
 
 
 
 

RESULTS COMPRESSION 
 

 
 

Figure-8.  Original image (cameraman.tif) compressed 
image size 256 * 256 decompression. 

 

 
 

Figure-9. Original image reconstructed image (256*256). 
 

CONCLUSION AND FUTURE WORKS 
 As part of the project, the algorithm was 

implemented in MATLAB using certain MATLAB 
functions and C programming language. The results were 
verified. 
Further compression can be achieved by: 

- changing the threshold value. 
- Including an entropy coding method like 

Huffman coding. 
- Can include a BWT block and MTF coding 

before run length encoding. 
The algorithm can be applied for colour images 

also- RGB matrices would have to be converted into grey 
scale intensity image. 

 
REFERENCES 
 
[1] Anuj Bhardwaj and Rashid Ali. 2009. “Image 

Compression Using Modified Fast Haar Wavelet 
Transform”World Applied Sciences Journal, Vol. 7, 
No. 5, pp. 647-653, 2009ISSN 1818-4952 © IDOSI 
Publications. 

 
[2] Phang Chang and Phang Piau. 2007. “Modified Fast 

and Exact Algorithm for FastHaar Transform”. World 
Academy of Science, Engineering and Technology, 
Vol. 35. 

 
[3] “Introduction to Datacompression” by Khalid Sayood. 
 

  


