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ABSTRACT  

 Extended Kalman filter (EKF) based solution is one of the most popular techniques for solving simultaneous 

localization and mapping (SLAM) problem. However, previous research showed the implementation of EKF for SLAM 

suffered with high computational costs, which affect the performance in real time application. This paper investigates the 

computational cost performance of an EKF-SLAM algorithm. The analysis was done by time measurement on sub-step 

motion update and measurement update on EKF by considering the total numbers of landmarks and numerous setting on 

range observation distance. The analytical results show that as the number of landmarks or range observation distances 

increased, the computational cost in measurement update step required more computation time compare to motion update 

step. Furthermore, improvements are needed to optimize the computational cost for the update step. 
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INTRODUCTION 
 Simultaneous localization and mapping (SLAM) 

is the operation of the robot building a map of an 

environment, while simultaneously localizing itself in it. 

SLAM was introduced by Smith [1], which was the first to 

focus on measurement error correlations during the map 

building process. Various different solutions [2–6] for 

SLAM have been proposed during the past 20 years. 

Extended Kalman Filter, (EKF) algorithm have been 

widely used as a solution to SLAM problem, [7, 8] has 

been formulated and solved as a hypothetical problem in a 

number of different structures. It’s had been widely 
implemented in SLAM for over a decade. However, its 

suffers several problems such as data association, 

convergence, linearity and computational complexity [9, 

10]. Several work on improvement of EKF SLAM had 

been done such as Unscented Kalman Filter [2], Sparse 

Extended Information Filter [11], Compressed Extended 

Kalman Filter [12] and FastSlam [13, 14]. However, there 

are still some limitations, especially on computational cost 

during real time, and intern of kalman filter update step 

[10]. In order to improve these problems, specific analysis 

is required. Several analysis on EKF had been done such 

as consistency and position error analysis [15,16] the 

author in [17, 18] worked on computational complexity 

analysis by derivation. However, there is no previous work 

on CPU runtime analysis.  

 In this paper, computational analysis on EKF 

algorithm by CPU runtime measurement will be covered. 

Through explicit analysis, our results showed that the 

number of landmarks and laser range observation 

distances are the factors to cause computational cost in 

measurement update step and required more computation 

time compared to motion update step which is as the 

observed number of features or landmark which when 

increased, the computational required also increased. This 

paper is organized as follows. The next section is general 

introduction of SLAM. Then, the third section briefly 

describes the EKF algorithm and a complexity analysis 

were derived. Finally, the simulation and analysis results 

are presented in the fourth section. 

 

SIMULTANEOUS LOCALIZATION AND 

MAPPING (SLAM) 

 SLAM describes the process of building a map of 

an unknown environment and simultaneously computing 

robot position with the constructed map. The autonomous 

vehicle is equipped with a set of proprioceptive, odometry 

to compute vehicle’s pose that includes its orientation 
(yaw) and x, y – coordinates of its position (2D case) and 

exteroceptive sensors, a range and bearing sensors that 

measure the distance to the landmark together with its 

bearing with respect to the autonomous vehicle’s current 
frame. Originate the most common model used to achieve 

the second task of the SLAM mapping problem. Noise 

introduced by the imperfection of sensors makes the 

already difficult task of SLAM more complicated. 

 
 

Figure-1. SLAM [8, 19]. 
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An autonomous vehicle navigates in the environment 

while taking measurements of landmarks within the 

sensing range. Figure-1 shows a simultaneous estimate of 

both robot and landmark locations where the true locations 

are never known or measured directly. Observations are 

made between the true robot and landmark locations. At 

each step-k an autonomous vehicle possesses (1) the mean 

vector that contains an autonomous vehicle’s estimated 
pose (xk) and estimated positions of detecting landmarks, 

(mk), (2) control vector applied in a previous step (uk) and 

(3) a vector of observations taken at k
th

 step (zk). In 

probabilistic form, the solution of the SLAM problem is 

represented a probability distribution, ܲ(��,݉|�0:�,�0) 

where (a.) �0:�={�1,�2,�3…��};a sequence of all 

observations,(b.) �0:�={�1,�2,�3…��};a sequence of 

applied control inputs and �0 ; an autonomous vehicle’s 
initial pose. A probability distribution describes a joint 

posterior density of an autonomous vehicle’s pose and 
landmarks’ positions given the initial state of an 
Autonomous vehicle, a sequence of applied control inputs, 

and a sequence of taking observations. Computation of a 

joint posterior is based on Bayes rule. At any step k, a 

previous joint posterior (��−1, ݉|�0:�−1, �0:�−1, �0), a vector 

of control inputs, and a vector of taking measurements are 

known. The current autonomous vehicle's pose is assumed 

to depend only on the previous pose and the current 

control input. The motion model ܲ(��|��−1,�� ) is based on 

vehicle model. The measurement model ܲ(��|��,݉) is 

defined by the sensor model. Kalman filter (KF) was the 

first technique to implement the bayes rule in SLAM, but 

it suffers from linearization thus EKF was introduced to 

overcome the problem.  

 

COMPUTATIONAL COMPLEXITY EKF-SLAM 

ALGORITHM 

 The Extended Kalman Filter (EKF) is an 

alternative of a Bayesian filter for SLAM [10]. In EKF 

SLAM, a map (x,Σ) includes the state distribution x to be 

estimated, which consists of the current vehicle location 

and the landmarks position in environment features. The 

covariance of the distribution, represented by Σ, gives an 

idea of the precision in the estimation. EKF SLAM is 

repetitive process from motion update to measurement 

update, the full process of EKF SLAM summarized in 

Table-1. The detail has been derived by [17,18]. 

 

 

Table-1. Ziegler-Nichols formula for oscillatory response method. 
 

 
 

Variable n is the current state of xt which contains the 

current pose and total landmark that have been observed, 

and r is the size of the measurement vector zt or the current 

number of landmark observed at the current vehicle pose. 

The test x2 is only required for data association [20]. 

During exploratory trajectories, the autonomous vehicle 

observes r features that have been observed from the 

previous vehicle position. As the new features detected it 

will keep it to the state vector, xt thus the size of the map n 

grows linearly. Computational complexity of each EKF 

update step is O (n
2
) and the total cost known to be O (n

3
). 

Given the limited speed, angle, range and bearing, the 

Jacobian matrix as shown in Table-2: 

 

 

 

Table-2. Jacobians required for the EKF. 

 
 

Variable r is the size of the measurement vector zt [20]. 

The fact regarding computational complexity in EKF 

SLAM is that,  Jacobians matrices Ft,Gt and Ht are sparse 

[17]. One of the most time consuming part is the matrix 

http://www.arpnjournals.com/
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inversion in St
−1

 with a complexity of approximately 

O(r
2.4

) [10,21].  

 

RESULTS AND DISCUSSIONS 

 Based on the theorems above, we identify the 

effect on computational time with a variation of the 

number of features or landmark and laser range. The 

parameter that was considered is number of landmarks and 

the range of laser observation where this parameter is able 

to extend the size of each matrix in EKF. In the following 

experiments, the vehicle model wheelbase and vehicle 

speed is 4 meters and 17 m/s, the control noise is (σV 
=0.2m/s, σγ =1°), and the observation noise is (σr 
=0.1m,σθ =1°). The controls are updated at 100 Hz and 
observation scans are obtained every 50Hz. Data 

association is assumed unknown throughout. All the 

experiments are performed on a computer with two Intel 

Core i5 CPUs at 3.3 GHz with 4GB RAM. Our 

implementation is coded in C and the algorithm was run 5 

times. The system stopwatch was used to measure the 

computational time on every each step in EKF. In this 

experiment only the matrix that required the higher 

computational complexity from Table 1 is measured and 

the 2 types of the scenario were considered which are: 

 

Scenario 1: CPU average runtime by various setting of 

laser observations range with 50 landmarks 

 

Scenario 2: CPU average runtime by various number of 

landmarks with fixed 30m laser observation range. 

 

 
 

Figure-2. Example of the final map builds by EKF SLAM with 50 Landmarks and 10m laser range. 

 

The example of final map created by EKF SLAM 

simulation is shown in Figure-2. The ‘■’ represents the 
natural features or landmark of the environment while the 

‘X’ represents the landmark estimated by EKF from the 
current vehicle pose. As the vehicle move, any natural 

feature such as trees and lamp posts which are located 

within observation range from the current vehicle pose 

will be used to compute the location of landmarks 

(features) and the current position of the vehicle.  

 The results show that as the number of landmarks 

or range observation distances increased, the 

computational cost in measurement update step required 

more computation time compared to motion update step. 

That caused by a number of steps required to compute in 

measurement update is higher than motion update. The 

theoretical output derived from Table-1 shows that the 

variable n and r were able to modify the size of the matrix, 

thus affecting the speed of computation time during real 

time exploration. This verified the result show in Figure-3 

which, as the number of landmarks observed is more than 

3, the computations required for Σ, K and S starts to 

increase. This is caused by quadratic component such as Σ 

required ܱ(݊2�), K required ܱ(݊�2
) and S is ܱ(�3

). If there 

is no feature detected or is out of the observation range the 

variable r will reset to empty or (r=0). This is opposite for 

variable n, where it will remain from the previous 

iteration. 

 

CONCLUSIONS 

 In this paper, the effect on computational time 

with variation of the number of features or landmark and 

laser range was investigated. The computational cost on 

each step in EKF was measured by using system 

stopwatch. The two types of scenario such as variation on 

the number of landmark and variation on laser observation 

range have been considered which effect the 

computational time. Through analysis, we got the results 

of effects of variation of the number of features or 

landmark and laser range on computational time. We 

showed that the number of landmarks and range 

observation distances are the factors to cause 

computational cost in measurement update step and 

required more computation time compared to the motion 

update step. Moreover, the information covariance matrix, 

http://www.arpnjournals.com/
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Σ and Kalman gain, K required higher time computational 

compared with other step in EKF. Furthermore, 

improvements are needed to optimize the computational 

cost for the update step especially on Σ covariance matrix 

and Kalman gain, K. 

 

 

 
 

Figure-3. Computational cost for scenario 1(left) and Computational cost for scenario 2 (right). 
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