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ABSTRACT 
              Neural networks are often used as a powerful discriminating estimator for tasks in system identification. This 
paper describes a neural-network-based method relies on the Radial Basis Function Network (RBF network), for 
estimating the variable damping factor C (n) and spring constant K (n) of a weighting platform. Firstly, the RBF network 
learns key properties of the step response of the weighting platform and then predicts the damping factor C (n) and spring 
constant K (n) of other systems with different step responses before the platform settled to the steady state. In the 
simulation and the experimental results, with the related applied masses, the correlation rates between the actual C(n), K(n) 
and estimated C(n) and K(n) are presented that shows the success of this method. 
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INTRODUCTION 
 The application of artificial neural networks in 
the control systems is vast and most of the theories have 
bought up to the practical environment [1, 2]. Radial Basis 
Functions (RBF) as a variant of artificial neural network in 
late 80’s are known as good functional estimation [3]. It 
has also proved that any continues nonlinear system can be 
modeled up to a certain precision by a set of Radial Basis 
Functions (RBF) [4, 5, 6]. System Identification and 
neural network techniques involve simpler representation 
than the finite element method and when created, amount 
for errors [7] and offer a probabilistic framework to the 
representation [8]. For instance the relationship between 
the input and output is learned by lessening the least-
square distance between the experiments and the neural 
network behavior. Nowadays Radial Basis Neural 
Networks are employed for these advantages: 
computational simplicity, supported by well-developed 
mathematical theory, and robust generalization, powerful 
enough for real-time real-life tasks [9, 10]. According to 
the recent results, RBF neural networks are effective for 
identifying a vast category of complex nonlinear systems 
when we don’t have enough information about those 
systems [11]. This paper describes how neural network 
based on RBF is employed to identify the K(n), C(n) 
variable parameters of a nonlinear dynamic system 
(weighing platform model).This method can be used for 
finite data and also can be trained on experimental data, 
which intrinsically include the effects of any other 
dynamic modes of vibration [12 …17]. 
  
MATERIALS AND METHODS 

Radial Basis Function (RBF) networks were 
originally proposed for the exact interpolation problem by 
Rosenblatt [18, 19] and used for discrimination by 
Broomhead and Lowe [20], and Moody and Darken [21]. 
Compared to the MLP model, the RBF network usually 
has much faster training speed, while maintaining the 
nonlinear classification ability. Therefore, it has gained 

popularity since it was originally proposed. The basic RBF 
network provides a nonlinear transformation of a pattern 

 according to: cd RRx →∈
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Where  is the number of basis functions,  is a 

weight,  is a bias and 

m jiw

jb iµ  dR∈  is called the center 

vector, and  h ∈  R is called the kernel width (or 
smoothing parameter). Formula (1) almost has the same 
mathematical form as the MLP model. The major 
difference is the logistic activation function is replaced by 
the radial basis function, whose value is usually the largest 
at its center, iµ  and decreases as x moves away from the 
center (One example is the Gaussian function 
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Therefore, the RBF network may be simply 

viewed as putting a small “bump” at each center, and 
adding the bumps together to form the classification 
boundary. 

Gaussian, multisquared, inverse multisquared, 
pseudo cubic and thin-plate-spline functions are examples 
of radial functions. Gaussian functions are normally used 
in RBFs because of its close connection with statistics. 
Some graphical examples of radial functions of Table-1 
are presented in Figure-1. 
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Table-1. Commonly used RBFs. 
 

Name Mathematical form of 
φ (z), z = |x − µ| /h 

Gaussian exp (−z2) 
Exponential exp (−z) 

Quadratic ß  az  z2 ++  

Inverse quadratic 
)z (a

1
22 +

 

Thin-plate spline z  log (z) 2

 

 
 

Figure-1. Format of some radial functions. 
  

The parameters that define a radial function are, 
therefore, the radius and center. The center defines the 
spatial position of the function and the radius is a measure 
of how the function spreads around its center. For 
Gaussian RBFs, the center is associated with the density 
function mean and the radius with its variance. The two 

most popular forms are the Gaussian, , and 

the thin-plate spline, . The Gaussian is 
more suitable for discrimination and density estimation, 
while the thin-plate spline is more suitable for curve fitting 
[22]. 

2

)( zez −=ϕ
)log()( 2 zzz =ϕ

Now RBF can be taken in to consideration for 
system identification as the input x, include the sampling 
data from the related plant or controller, and 

)1(),...2(),1( +−−− Nkykyky  in the time instant 
 and 1,...2,1 +−−− Nkkk

)1(),...2(),1( +−−− Nkxkxkx represents the system 
input at the time instant 1,...2,1 +−−− Nkkk , from 
the network perspective the input vector x can be formed 
from : 
 

)]1(),...2(),1(:)1(),...2(),1([ +−−−+−−−= NkxkxkxNkykykyfx      (2) 
 

By appropriate selection of basis functions, center 
positions and weightings the network output can be 

obtained to model the output system. For multiple output 
systems, several RBFs can be employed and combined to 
form a network as shown in Figure-2. 

y

 
 

Figure-2. Radial basis function networks architecture. 
 

There are various learning algorithms for the 
RBF networks [23, 24]. The basic algorithm employs a 
two-step learning strategy (hybrid learning): estimation of 
kernel positions and kernel widths using some 
unsupervised clustering algorithm, followed by a 
supervised Least Mean Square (LMS) [25] type of 
algorithm to determine the connection weights to the 
output layer. Since the output units are linear, a 
noniterative algorithm can be used. After this initial 
solution is obtained, a supervised gradient-based algorithm 
can be used to refine the network parameters. The learning 
algorithm builds an RBF network by finding out its 
parameter setting (it is unable to find out the number of 
hidden units of the RBF network). Therefore, the number 
of hidden units will be determined by trial and error. 

In the supervised learning stage, the RBF 
network with fixed centers and widths can be interpreted 
as a case of multivariate linear regression on the training 
set: 
 

eZwy +=                                                                    (3) 
 

Where  is the desired output, T
pyyyy ],...,,[ 21= Z  is 

the design matrix, which is a matrix with the th 

column , 

 is the output layer weight vector 
and is the error. The vector is determined minimizing 
the sum of squared errors: 
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A simple method to find the solution of this linear least 
squares problem may be obtained solving the well-known 
linear system (called normal equations): 
 

yZwZZ TT
=)(                                                            (5) 

An ideal weighing platform can be modeled by a mass-
spring-damping structure shown in Figure-3. It has a 
typical under damped ideal step response as showed in 
Figure-4. 
 

 
 

Figure-3. Weighing platform model with 
mass-spring-damping structure. 

 

 
 

Figure-4. A typical under damped ideal step response. 
 
It is governed by the solution of the following second 
order differential equation: 
 

)()()()()()())(( ''' tgmtynKtynCtymtm p =+++    (6) 
 

Where , is the deflection signal obtained from the 
strain gauge on the weighing machine; and mp are 
applied mass and the platform mass respectively; C(n) is 
the damping factor; K(n) is the spring constant and g is the 
gravitational constant. 

)(ty
)(tm

For a general applied mass function , this is a 
nonlinear differential equation. However, for commonly 
faced situation is a step function, which is assumed 
here. In this case the differential equation (6) is linear, for 
which the explicit solution is modeled by a constant term 
plus a transient term which can be under damped (u), 
critically damped (c), or over damped (o). Thus: 
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And the transient terms for under damped, critically 
damped and over damped cases are: 
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Respectively, where the various parameters are related 

to the initial platform displacement

q

0b , initial velocity 1b , 
the constant platform parameters C (n), K (n), mp and the 
applied mass  by the expressions given in the 
appendix. 

)(tm

These expressions have been used to generate 
data in the simulation study described in followings 
section. 
Sampled data signals are assumed, for which, nTt − , 
where  is the sample interval. Thus is written 
as .  

T )(ty
)(ny

 
RESULTS AND DISCUSSIONS 

Before any simulation was performed, it is very 
important to initialize the data and the RBF Network with 
two outputs C(n) and K(n), represented in Figure 5 is used 
for simulation purposes.  
 

 
 

Figure-5. RBF network for platform parameters (K (n), C 
(n)) identification. 
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The proposed RBF network model shown in Figure-5 is 

 Number of input samples:  

=+ NN  
 Number of output parameters: C(n), K(n) 

layer and 

 of neurons used for this network is 202, 

 sed algorithms 
sed on

samples 

the owner of the following characteristics: 
 

 

(),...2(),1( −−− kykyk 100);1y

 Number of layers is 3: input layer, hidden 
 Output layer 
 Total number

where 100 for input neurons, 100 for our hidden 
neurons and 2 for the output neurons. 

The RBF trained using the propo
ba  moving the least squares algorithm was used to 
model the non-linear system. In this simulation, mass-
spring-damping system (weighing platform system) was 
selected as the non-linear function of RBF network and the 
RBF centers were initialized to the first few samples of the 
input-output data. During calculating the mean squared 
error (MSE), the noise model was excluded from the 
model since the noise model will normally cause the MSE 
to become unstable in the early stage of training.  
A data set of input 

))99(),...2(),1(( −−− kykyky  was taken from the 
 simulate the equation 

7 in which only the under damped state is considered. The 
weighing platform parameters in all simulations 

are kgtm 5)( = , kgm 0= ,

MATLAB programming language to
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s
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terval sts 00004.0=

00 =b s
mb 0= . 100 

data patterns w ed to train the netw ure of 
the trained network performance, the recalling process 
includes two stages: the first stage is tested with the seen 
patterns and the next stage is tested with the unseen 
patterns to the network and are seen to the user, after these 
two stage has been completed we can be sure that the 
network is reliable upon the unseen patterns to both the 
network and the user. The 10 seen data patterns were used 
to test the fitted network model and the network model 
predicts two parameters (K (n), C (n)) reasonably over the 
training data sets. Since the model predicts reasonably and 
has good correlation tests [26] according to the Figure 6 
and Figure 7, This is also done by the 10 unseen patterns 
shown in Figure 8, the network predicts two parameters 
(K(n),C(n)) reasonably over the recalling data sets Since 
the model predicts reasonably and has good correlation 
tests according to the Tables 2a and 2b and has a good 
correlation of 0.99 and a negligible error between desired 
and actual C(n) and K(n), the model can be considered as 
an adequate representation of the identified system. 
 

1

ere us ork; To be s

 
 
 
 

Table-2a. Results of simulation of typical estimated 10 
unseen platform parameters K (n), C (n). 

 

Actual 
K(n),N/m 

Estimated
K(n),N/m 

Actual 
C(n),Kg/s 

Estimated 
C(n),Kg/s 

5090 5089.4 11.9 11.897 
5190 5189.9 12.9 12.899 
5290 5289.3 13.9 13.896 
5390 5387.7 14.9 14.889 
5490 5489.1 15.9 15.9 
5590 5593 16.9 16.909 
5690 5693.9 17.9 17.91 
5790 5791.9 18.9 18.907 
5890 5892.2 19.9 19.916 
5990 5985.2 20.9 20.87 
Corr = 0.999963 Corr = 0.999991 

 
Table-2b. Results of simulation of typical estimated 

10 unseen platform parameters K (n), C (n). 
 

Absolute Error K(n) Absolute Error C(n) 
0.006 0.00003 
0.001 0.00001 
0.007 0.00004 
0.023 0.00001 
0.009 0.00000 
0.03 0.00009 

0.039 0.0001 
0.019 0.00007 
0.022 0.00016 
0.048 0.0003 

Rms=0.0257 Rms=1.2e-4 
 

 
 

Figure-6.  The simulation performance of trained RBF 
network indicates a linear relationship between 

the actual K(n) and estimated output K(n). 
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Figure-7. The simulation performance of trained RBF 
network indicates a linear relationship between 

the actual C(n) and estimated outputs C(n). 
 

 
 

Figure-8. Time series step response with 10 
various platform parameters, C(n), K(n). 

 
According to the last two stages of the simulation 

results (1.training with seen data sets,2. recalling with 
unseen data set (unseen to the trained network but seen to 
the user); since the two stage were passed successfully, we 
would be confident of the results obtained by the trained 
network for the fully unseen patterns(unseen for both user 
and the network) but here the training and recalling stages 
will be done with the experimental data set that are surely 
not free noise (included noise of about %2)  which were 
obtained from the industrial weighing platform. The 
weighing platform has the dimensions of 55.50 cm. 50.50 
cm and 16.50 cm for length, width and height respectively 
with nominal full scale taken to be about 100kg. Any 
dynamic systems with fixed parameters K (n), C (n) can be 
easily written in the Laplace domain as follows: 
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Displacement,mm 

Samples, n 

 

Figure-9. A typical experimental time series step 
response. Displacement,mm  

 

Power Spectral 
Density 

Samples, n 

Frequency, Hz 

 

Figure-10. Power spectral density of response 
shown in Figure-9. 
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Figure-11. A typical filtered time series step 
response of Figure-9. 

 
As the weighing system or any non-linear system  has 
fixed parameters C(n) and K(n), for each sequence of 
applied mass, the coefficients of the Laplacian transfer 

function 
)(
)(

,
)(
)(

tm
nK

tm
nC

 will be variable in equation 8; 

this means for any sequence of applied mass the 
coefficients will be estimated. A typical experimental time 
series step response obtained from the weighing platform 
system is illustrated in Figure-9 and Power spectral 
density of the typical response has shown in Figure-10 
which represents that the obtained data set from the system 
has a noise at the frequency of 55 Hz. The source of noise 
may refer to random and unpredictable electrical signals 
naturally produced by the internal and external factors of 
the system. This kind of noise can not be eliminated from 
entering into the sampling process and filtering must be 
considered after the samples were obtained to reduce the 
noise contamination, but some of the noises can’t be 
eliminated obviously; all noise frequency components that 
fall outside the weighing system respond band should be 
rejected by a filter such as a low-pass second order 
Chebyshev filter with BW=50Hz.. After applying the filter 
to the input samples the energy spectral density of the step 
response indicates the noise reduction shown in Figure-11 
in comparison with the Figure 9 and the filtered step 
response is shown in Figure 10. Now the RBF network is 
trained using the new filtered experimental data samples 

with their corresponding 
)(
)(,

)(
)(

tm
nK

tm
nC

 parameters. For 

any sequence of applied mass, the first 100 samples in 
transient region were taken immediately within sampling 
interval of 0.004 s, so 0.4 s is required for parameters to be 
estimated. 
 

 

Displacement,mm Power Spectral 
Density 

Frequency, Hz 
Samples, n 

 

Figure-12. Power spectral density of response shown in 
Figure-11. 

 

 
 

Figure-13. The performance of experimental RBF 
network for actual and desired parameter C (n)/m (t). 

 

 
 

Figure-14. The performance of experimental RBF 
network for actual and desired parameter K (n)/m (t). 
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Figure-15. unfiltered step response of typical unseen time 
series experimental data with different real platform 

parameter. 
 
For plotting the experiment performance of the trained 

RBF Network for 
)(
)(,

)(
)(

tm
nK

tm
nC

 the sequence of applied 

masses is taken from 10-50 Kg in step of 1 Kg as shown in 
Figures 13 and 14; in these Figures the linear relationship 

with slope of 1.0002 and 0.996 is assigned for 

)(
)(,

)(
)(

tm
nK

tm
nC

 respectively and the correlation rate (the 

square root of R ) for both 
)(
)(,

)(
)(

tm
nK

tm
nC

 is 

 that show a good estimation since the 
correlation rate is almost equal to +1. Noticing that for the 
ANN recalling stage  the noise free data patterns were 
applied for input samples and the results obtained from the 
Figures 13 and 14 illustrates that the RBF network can 
model a non-linear system by mapping the input data 
samples to the corresponding variable parameter K(n) and 
C(n). The typical unseen patterns that are not used for 
training the RBF Network shown in Figures 15 and 16 
(unfiltered and filtered experimental patterns) for testing 
the ability of the RBF Network are used at the recalling 
stage. In table 3 the typical applied masses ranging from 
15 to 45 kg in step of 5 kg is applied and the results of the 

estimated and desired 

999.02 =R

)(
)(,

)(
)(

tm
nK

tm
nC

 and the negligible 

errors between these values are shown clearly. 

Displacemen,mm 

Samples, n 

 

Table-3. Experimental results of typical desired and estimated
)(
)(

,
)(
)(

tm
nK

tm
nC

. 

 

Applied Desired Estimated Desired Estimated 
Absolute 

error 
Absolute 

error 

Mass (Kg) 

)(
)(

tm
nC

 
)(
)(

tm
nC

 
)(
)(

tm
nK

 
)(
)(

tm
nK

 
)(
)(

tm
nC

 
)(
)(

tm
nK

 

15 3.3300 3.2532 66.6600 66.8533 0.0768 0.1933 
20 2.5000 2.6532 50.0000 49.9525 0.1532 0.0475 
30 1.6600 1.5532 33.3300 33.6366 0.1068 0.3066 
35 1.4300 1.3405 28.5700 28.7800 0.0895 0.2100 
40 1.2500 1.3946 24.3870 24.8290 0.1446 0.442 
45 1.1100 1.0775 22.2200 22.2183 0.0325 0.0017 

 
As the ANN is learning the characteristic of the 

defined non-linear system, any initial displacement will 
not have effect on the output response and the accuracy of 
the output depends on the training process and the sample 
data patterns we have used for training. 
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Figure-16. Filtered step response of Figure-15. 
 
CONCLUSIONS 

RBF NN algorithm proposed is good at rapid 
predicting the weighing platform system’s K (n) and C (n) 
parameters before reaching the steady state. The 
simulation and experimental results and the correlation 
rate (almost equal to one) between the actual data and the 
desired data confirm that RBF NN algorithm is good for 
predicting the parameters accurately. 
 
ACKNOWLEDGMENTS 

The co-operation of W. and T. AVERY Ltd. in 
providing access to a weighing platform is gratefully 
acknowledged. 
 
REFERENCES 
 
[1] Hunt K.J., Sbarbaro, D., Zbiknowski R., and Gaqthrop 

P. J. 1992. Neural Networks for Control Systems = A 
Survey Auto matica. 28(6): 1083-1112. 

 
[2] Bishop C.M., Haynes, P.S., Smith, M.E.V., Todd, T. 

N. and Trotman D.L. 1994.  Real-times Contorl of a 
High Temprature Plasma Using a Hardware Neural 
Network” in “Neural Network, Neurao-fuzzy and 
other learning Systems for Engineering Application 
and Research. J. A. Powell, Proceedings of an EPSRC 
Conference, London. April 18th-19th. pp. 16-25. 

 
[3] Tou J. T., Gonzalez R. C. 1974. Pattern Recognition. 

Reading, MA: Addison-Wesley. 
 
[4] Hartman E.J., Keeler, J.D., and Kowalski J.M. 1990. 

Layered neural networks with Gaussian hidden units 
as universal approximations. Neural Computation. 2: 
210-215. 

 
[5] Park J. and Sandberg, J.W. 1991. Universal 

approximation using radial basis functions network 
Neural Computation. 3: 246-257. 

 
[6] Poggio T. and Girosi F. 1990. Networks for 

approximation and learning. Proc. of IEEE. 78(9): 
1481-1497. 

 

Displacement,mm 

[7] R. L.Riche. 2001. Neural Identification of non-Linear 
dynamic structures. Journal of Sound and vibration. 
248: 247-265. 

 
[8] G. F. Lin. A spatial interpolation method based on 

radial basis function networks incorporating a 
semivariogram.  

 

Samples, n 

[9] D. Pomerleau. 1994. Neural Network Perception for 
Mobile Robot Guidance, Kluwer Academic 
Publishing. Boston, MA. 

 
[10] M. Rosenblum and L.S. Davis An improved radial 

basis function network for visual autonomous road 
following. IEEE Transactions on Neural Networks, 
7(5): 1111-1120, 1996. 

 
[11] Peng H. Ozaki,T., Ozaki, V.H., Toyoda Y. 2003. A 

Parameter Optimization Method for Radial Basis 
Function Type Models. IEEE Trans. Neural Networks. 
14: 432-438 

 
[12] Bahar H. B and Horroks D. H. 1998. Dynamic weight 

estimation using Artificial Neural Network. Artificial 
Intellegence in Engineering. 12. pp. 135-139. 

 
[13] Tolle H. 1992. Neurocontrol: Learning Control 

Systems Inspired By Neural Architechtures and 
Human Problem Solving Strategies. Lecture Notes in 
Control and Identification Sciences. Springer-Verla. 
p.172. 

 
[14] Brown M., Harris C. J. 1990. Neurofuzzy Adaptive 

Modelling and Control. Prentice-Hall. 
 
[15] Girosi F. and Poggio T. 1990. Neural Networks and 

the Best Approximation Property Biol. Cybernetic. 63. 
pp. 169-176. 

 
[16] Cichocki A. and Unbehauen R. 1993. Neural 

Networks for Optizimation and Signal Processing. 
John Wiley and Sons. 

 
[17] Lowe D. 1994. Non Local Radial Basis Function for 

Forecasting and Density Estimation IEEE Intern. 
Conf. on neural networks.11: 1197-1198. 

 
[18] D. Lowe. 1995. Radial basis function networks, In M. 

A. Arbib, editor, The Handbook of Brain Theory and 
Neural Networks. MIT Press. Cambridge, MA. pp. 
779-782. 

 

   39 



                                                         VOL. 4, NO. 4, JUNE 2009                                                                                                             ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2009 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

[19] F. Rosenblatt. 1992. Principles of Neurodynamics: 
Perceptrons and the Theory of Brain Mechanisms, 
Spartan Books. Washington, D.C. 

 
[20] D. S. Broomhead and D. Lowe. 1998. Multi-variable 

functional interpolation and adaptive networks, 
Complex Systems. 2(3): 269-303. 

 
[21] J. Moody and C. J. Darken, Fast learning in networks 

of locally-tuned processing units, Neural 
Computation. 1: 281-294. 

 
[22] D. Lowe. 1995. Radial basis function networks, In M. 

A. Arbib, editor, The Handbook of Brain Theory and 
Neural Networks., MIT Press, Cambridge, MA. 

 
[23] S. Haykin. 1994.  Neural Networks: A Comprehensive 

Foundation. MacMillan College Publishing Company. 
New York. 

 
[24] F. Schwenker, H. A. Kestler and G. Palm. 2001. Three 

learning phases for radial-basis-function networks. 
Neural Networks, 14: 439-458. 

 
[25] Widrow B. and Stearns, S.D. (1985). Adaptive Signal 

Processing. Englewood Cliffs, NJ: Prentice Hall. 
 
[26] Billings S. A. and W. S. F. Voon. 1986. Correlation 

based model validity tests for non-linear 
models.International Journal of Control. 44(1): 235-
244. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   40 



                                                         VOL. 4, NO. 4, JUNE 2009                                                                                                             ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2009 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

APPENDIX 
Model parameters of the weighing platform 

system with the parameters of C damping factor, K spring 
constant, and m (t) as the applied mass, mp as the platform 
mass, b0 as the platform displacement and b1 as the initial 
velocity are defined as below in three states of the step 
response: under damped (u), over damped (o) and 
critically damped(c): 
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Critical damped (c) 
 

 
 

 
 

 
 

 
 

 
 
Over damped (o) 
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