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ABSTRACT 

Transfer capability refers to the ability of a transmission network to transfer electric power reliably from an area 
of supply to an area of demand by way of all transmission lines (or paths) between two areas under a given operating 
condition. Available transfer capability (ATC) is, in fact, an estimate of the near-future transmission network's capability 
of additional power transfer over the existing committed usage. As such, there are several uncertainties associated with the 
parameters and forecasting quantities used in the ATC evaluation. In this paper the aspects of ATC limited by the voltage 
collapse point is considered,  the main aim of this paper is to provide a fast and efficient method to compute the voltage 
stability constrained ATC using complex valued neural network (CVNN). The proposed CVNN deals with complex value 
data with complex number weights and complex value neuron activation functions. The results have been presented and 
analyzed in this paper. 
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INTRODUCTION 

Transfer capability is the measure of the ability of 
interconnected electric systems to reliably move or 
transfer power from one area to another over all 
transmission lines (or paths) between those areas under 
specified system conditions. The units of transfer 
capability are in terms of electric power, generally 
expressed in megawatts (MW). In this context, “area” may 
be an individual electric system, power pool, control area, 
sub region, or a portion of any of these. Transfer capability 
is also directional in nature. Available Transfer Capability 
(ATC) is a measure of the transfer capability remaining in 
the physical transmission network for further commercial 
activity over and above already committed uses. Transfer 
capabilities are highly dependent on generation, customer 
demand and transmission system conditions assumed 
during the period considered. Where as capacity usually 
refers to the thermal limit or rating of a particular 
transmission element or component. The ability of a single 
transmission line to transfer electric power, when operated 
as part of the interconnected network, is a function of the 
physical relationship of that line to the other elements of 
the transmission network. The task of evaluation of ATC 
is very complex and the speed and accuracy requirements 
for the on line ATC evaluation make the task even harder.   
One of the most common approaches for transfer 
capability calculations is the continuation power flow 
(CPF) [1, 2]. The amount of the transfer is a scalar 
parameter which can be varied in the model. CPF is a 
general method for finding the maximum value of a scalar 
parameter in a linear function of changes in injections at a 
set of buses in a power flow problem. In principle, CPF 
increases the loading factor in discrete steps and solves the 
resulting power flow problem at each step. CPF yields 
solutions at a voltage collapse points. However, since CPF 

ignores the optimal distribution of the generation and the 
loading together with the system reactive power, it can 
give conservative transfer capability results.  

The practical computations of transfer capability 
are evolving. The computations presently being 
implemented are usually oversimplified and in many cases 
do not take sufficient account of effects such as 
interactions between power transfers, loop flows, non-
linearities, operating policies and most importantly voltage 
collapse blackouts. The goal of the methods described here 
is to improve the accuracy and realism of transfer 
capability computations. 

Transfer capabilities can be estimated with 
simple power system models such as the DC load flow 
approximation. A DC model may be preferable to an AC 
model particularly in circumstances where the extra data 
for an AC model is unavailable or very uncertain, such as 
the case of very long time frame analysis.  
The DC approximation is preferred for these reasons: 
 

 Fast computation - no iteration. 
 Thermal limits, MW limits are   considered. 
 Network topology handled with simple   and linear 
methods. 

 Good approximation over large range of    conditions.  
Minimum data is required. 

 

But DC approximation is poor for these reasons: 
 It cannot identify voltage limits 
 It is not accurate when VAR flow and  
when voltage deviations are   considerable. 

 Over use of linear superposition  
increases errors. 

 
 In this proposed method the limitations on power 
system performance that we consider are transmission line 

   45 



                                               VOL. 4, NO. 8, OCTOBER 2009                                                                                                             ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2009 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

flow limits, voltage magnitudes and voltage collapse by 
implementing a complex valued neural network. The input 
to the network is diagonal elements of the complex bus 
admittance matrix and the complex loads in an area which 
are assumed to be fluctuating in nature. An additional 
feature of the network is incorporating the line losses in 
evaluation of ATC. All these limits can only be handled in 
an AC load flow power system model. Computed ATC 
values with and without contingency are compared with 
the Full AC method. 
 
COMPLEX VALUED NEURAL NETWORKS 

In recent years, complex-valued neural networks 
have widened the scope of application in optoelectronics, 
imaging, remote sensing, and artificial neural information 
processing. The generalization of real valued algorithms 
cannot be simply done as complex valued algorithm. The 
complex back propagation algorithm can be applied to 
multilayered neural networks whose weights, threshold 
values, inputs and outputs all are complex numbers. 
Complex version of back propagation (CVBP) algorithm 
made its first appearance when Widrow, Mc Cool and Ball 
[3] announced their complex least mean squares (LMS) 
algorithm. Kim and Guest [4] published a complex valued 
learning algorithm for signal processing application. 
Georgiou and Koutsougeras [5] published another version 
of CVBP incorporating a different activation function and 
have shown if real valued algorithms be simply done as 
complex valued algorithm then singularities and other 
such unpleasant phenomena may arise. Hirose [6] studied 
the dynamics of CVNN which was later applied to the 
problem of reconstructing vectors lying on the unit circle. 
Benvenuoto and Piazza [5] published a different version of 
CVBP by using different activation function. Wang [6] 
proposed a complex valued recurrent neural network to 
solve the complex valued linear equations. An extensive 
study of CVBP was reported by Nitta [7]. The average 
learning speed of complex BP algorithm is faster than that 
of real BP algorithm. The standard deviation of the 
learning speed of complex BP is smaller than that of the 
real BP. Hence the complex valued neural network and the 
related algorithm are natural for learning of complex 
valued patterns. Werbos and Titus [8] and then Gill and 
Wright [9] discussed the different consequences of 
changing error functions in an optimization scheme. L. 
Chan et al. [10] published applications of complex 
artificial neural networks to load flow analysis.  
 
STRUCTURE OF COMPLEX VALUED NEURAL 
NETWORKS 

A three layered neural network is shown in 
Figure-1. In a complex valued neural network shown in 
Figure-2 all the inputs, outputs, weights, and biases are 
complex values. To overcome the scaling problem split 
sigmoidal activation function is used for training the 
network. 
 

 
 

Figure-1. Three layered neural network. 
 
In this complex valued neural network: 
 

L  number of input layer neurons 
M  number of hidden layer neurons 
N  number of output layer neurons 
xi  output value of input neuron i (input) 
zj  output of hidden layer neuron j 
ok  output of the output neuron k 
wji  complex weights between input layer 
              neuron i and hidden layer neuron j 
vkj  complex weight between hidden layer 
             neuron j and output layer neuron k 
θj           threshold / bias of hidden layer 
             neurons 
γk          threshold / bias of output layer 
             neurons 
 

The network is trained with a given set of input 
and output data to learn a functional relationship between 
input and output. We have used complex BP learning rule 
which has been obtained by using a steepest descent 
method for multilayered complex valued neural network 
given by Nitta [7]. The weights are initiated to some 
random values. The outputs are obtained for these random 
input values. The error between actual output and the 
desired output is calculated. This error is back propagated 
and the weights are updated. Then for these new values of 
weights, outputs are once again calculated. These actual 
calculated outputs are once again compared with the target 
outputs and the error is calculate, which is again back 
propagated and the weights are once again updated. This 
iterative process is continued till the error becomes less 
then the minimum defined. 
 
Internal potential of hidden neuron j: 
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Internal potential of output neuron k: 
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Output of output neuron k: 
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With the help of this error ek using different complex error 
functions the error E is obtained. Then we derive the 
gradient of E with respect to both the real and imaginary 
part of the complex weights. 
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During training the network cost function E is minimized 
by recursively altering the weight coefficient based on 
gradient descent algorithm, given by 
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Where ‘p’ is the number of iterations and ‘η’ is the 
learning rate constant. 
 

 
 

Figure-2. Complex valued neural network. 
 
THE PROPOSED APPROACH 

The following assumptions are made while 
calculating the ATC. 
 

a) The base case power flow of the system is feasible 
and corresponds to a stable operating point; 

b) The load and generation patterns vary very slowly; 
and 

c) TTC calculation is in the steady state analysis domain. 
 
Repeated power flow (RPF) method is used for obtaining 
the training patterns and the following choices are made in 
the calculation. 

 Establish a secure, solved base case.  
 Specify a transfer including source and sink 
assumptions. 

 Identify the branch flows influencing the ATC of 
selected branch appreciably. 

 Identify the line outages having significant influence on 
the above said branch power flows. 

 Generate numerous training data sets involving above 
said power flows and line outages. 

 The transfer margin is the difference between the 
transfer at the base case and the limiting case. 

 

 
 

Figure-3. Nine bus system. 
 

For generating training patterns for computing 
ATC a 9 bus 9 line system is considered as shown in 
Figure-3. The calculation of ATC is done by using the 
Newton Raphson load flow solution to compute the power 
flow of each transfer case. This method is less prone to 
divergence with ill-conditioned problems. And also the 
number of iterations required is independent of the system 
size. The loads at bus number 7 and 9 are increased 
simultaneously and the transfers from area 1 to area 2 are 
obtained. The total transfer capability is the sum of 
transfers through the interconnecting lines i.e. line joining 
buses 4 and 9, buses 6 and 7. The available transfer 
capability is given by 
 

ATC = TTC – base case transfer 
 

Satisfying the following system operating conditions 
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Typical P-V curves are shown in Figures 4 and 5. 

The variations in ATC with respect to the changes in load 
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of area 1 with and without contingency are shown in 
Figures 4 and 5. 
 

0 50 100 150 200 250
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Power MW

Vo
lta

ge
 P

.U

P-V curves

Bus 7

Bus 9

 
 

Figure-4. P-V curves of area 2 without contingency. 
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Figure-5.   P-V curves of area 2 with contingency. 
 
The effect of interactions between power 

transfers is taken in to account by varying the load in area 
1. The variation of ATC is shown in Figures 6 and 7. 
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Figure-6.  ATC without contingency. 
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Figure-7.  ATC with contingency (line 4-9 outage). 
  

Large number of training patterns is obtained 
with and without contingency. This method is proposed 
for better prediction how a realistic power system will 
react over a wide range of operating conditions. The 
variation of error with respect to number of iterations is 
shown in Figure-8. 
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Figure-8. Error. 
 
RESULTS AND DISCUSSIONS 

For the purpose of verifying the validity and 
correctness of the proposed method a 9 bus system is 
selected to compute the real and reactive power transfer 
from one area to another area. The system consisting of 9 
buses is divided in to two areas. The complex load levels 
used to create data for training the proposed neural 
network in area 1 are varied from 100% to 250% of base 
case values using different line outages. The available 
transfer capability (ATC) in MW and the reactive power 
transfers in MVAR at different test cases are computed. 
The comparison between the proposed CVNN method and 
the repeated power flow (RPF) methods are shown in 
Tables 1 to 4.  
 

Table-1. Power transfer and ATC without contingency. 
 

Load in  
area 1 RPF CVNN ATC 

(MW) 
90+30j 438+j276 441+j282 441 
120+j40 416+j245 418+j244 418 
150+j50 393+j221 385+j224 385 
180+j60 365+j190 359+j180 359 
210+j70 340+j175 332+j168 332 

 
Table-2. Power transfer and ATC with Line 5-6 outage. 

 

Load in  
area 1 RPF CVNN ATC 

(MW) 
90+30j 357+j214 351+j211 351 
120+j40 344+j203 338+j210 338 
150+j50 323+j77 318+j95 318 
180+j60 287+j130 284+j133 284 
210+j70 210+j40 204+j42      204 

 
 
 

Table-3. Power transfer and ATC with Line 6-7 outage. 
 

Load in  
area 1 RPF CVNN ATC 

(MW) 
90+30j 298+j192 290+j186 290 
120+j40 293+j185 284+j182 284 
150+j50 290+j186 281+j179 281 
180+j60 282+j175 276+j172 276 
210+j70 244+j260 239+j256 239 

 
Table-4. Power transfer and ATC with Line 9-4 outage. 

 

Load in  
area 1 RPF CVNN ATC 

(MW) 
90+30j 90+j34 92+j35 92 
120+j40 86+j38 86+j33 86 
150+j50 80+j16 81+j20 81 
180+j60 78+j20 76+j22 76 
210+j70 73+j25 75+j21 75 

 
CONCLUSIONS 

This paper introduces the application of complex 
valued neural network for ATC computations with and 
without contingencies. To evaluate the performance a 
numerical example of 9 bus test system is presented. The 
objective function is load increase on specific source and 
sink nodes. The voltage limits of the buses and the line 
losses are well considered in this method. The simulation 
results show that the proposed method is very effective in 
determining the ATC. 
The main conclusions of the paper are: 
 

 The proposed CVNN method is effective in 
calculating the ATC between different areas subject to 
system operating limits; 

 Even though this method is proposed for computation 
of ATC with constant load power factor, it can be 
used at different power factors; and 

 The application of proposed method can also be 
extended to determine the variations in ATC with 
respect to reactive power incorporating FACTS 
devices.  
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