There is no wealth like Knowledge
                            No Poverty like Ignorance
ARPN Journals

ARPN Journal of Engineering and Applied Sciences >> Call for Papers

ARPN Journal of Engineering and Applied Sciences

Fraud recognition in Digital Transactions by using SMOTE algorithm

Full Text Pdf Pdf
Author V. Priyadarshini and A. Pushpa Latha
e-ISSN 1819-6608
On Pages 552-562
Volume No. 18
Issue No. 05
Issue Date April 05, 2023
Keywords fraud detection (FD), digital transactions, machine learning (ML), data mining (DM), credit card fraud (CCF), synthetic minority oversampling approach (SMOTE).


Digital transactions make our lives easier. At the same time, every human is facing fraud issues by using Digital Transactions like credit cards with the growing number of transactions. Many intruders try to steal credit card details using various internet sources and cheat credit card holders. The intruders play unique tricks to cheat users, like sending trustworthy messages and emails. An enhanced fraud detection technique has become necessary to keep users sustainable to overcome the problem. An Ensemble model is constructed in this study utilizing the SMOTE algorithm to detect fraudulent transactions and alert users. The model performance is evaluated by using Machine Learning Models like KNN, Logistic Regression, and SMOTE. Among these, the SMOTE algorithm has the highest accuracy in detecting fraud.


GoogleCustom Search

Seperator Publishing Policy Review Process Code of Ethics

© 2023 ARPN Publishers